/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn, Leonardo de Moura -/ prelude import init.wf init.tactic init.num open eq.ops decidable or namespace nat notation `ℕ` := nat /- basic definitions on natural numbers -/ inductive le (a : ℕ) : ℕ → Prop := | refl : le a a | step : Π {b}, le a b → le a (succ b) infix `≤` := le attribute le.refl [refl] definition lt [reducible] (n m : ℕ) := succ n ≤ m definition ge [reducible] (n m : ℕ) := m ≤ n definition gt [reducible] (n m : ℕ) := succ m ≤ n infix `<` := lt infix `≥` := ge infix `>` := gt definition pred [unfold-c 1] (a : nat) : nat := nat.cases_on a zero (λ a₁, a₁) -- add is defined in init.num definition sub (a b : nat) : nat := nat.rec_on b a (λ b₁ r, pred r) definition mul (a b : nat) : nat := nat.rec_on b zero (λ b₁ r, r + a) notation a - b := sub a b notation a * b := mul a b /- properties of ℕ -/ protected definition is_inhabited [instance] : inhabited nat := inhabited.mk zero protected definition has_decidable_eq [instance] : ∀ x y : nat, decidable (x = y) | has_decidable_eq zero zero := inl rfl | has_decidable_eq (succ x) zero := inr (by contradiction) | has_decidable_eq zero (succ y) := inr (by contradiction) | has_decidable_eq (succ x) (succ y) := match has_decidable_eq x y with | inl xeqy := inl (by rewrite xeqy) | inr xney := inr (λ h : succ x = succ y, by injection h with xeqy; exact absurd xeqy xney) end /- properties of inequality -/ theorem le_of_eq {n m : ℕ} (p : n = m) : n ≤ m := p ▸ le.refl n theorem le_succ (n : ℕ) : n ≤ succ n := by repeat constructor theorem pred_le (n : ℕ) : pred n ≤ n := by cases n;all_goals (repeat constructor) theorem le.trans [trans] {n m k : ℕ} (H1 : n ≤ m) (H2 : m ≤ k) : n ≤ k := by induction H2 with n H2 IH;exact H1;exact le.step IH theorem le_succ_of_le {n m : ℕ} (H : n ≤ m) : n ≤ succ m := le.trans H !le_succ theorem le_of_succ_le {n m : ℕ} (H : succ n ≤ m) : n ≤ m := le.trans !le_succ H theorem le_of_lt {n m : ℕ} (H : n < m) : n ≤ m := le_of_succ_le H theorem succ_le_succ {n m : ℕ} (H : n ≤ m) : succ n ≤ succ m := by induction H;reflexivity;exact le.step v_0 theorem pred_le_pred {n m : ℕ} (H : n ≤ m) : pred n ≤ pred m := by induction H;reflexivity;cases b;exact v_0;exact le.step v_0 theorem le_of_succ_le_succ {n m : ℕ} (H : succ n ≤ succ m) : n ≤ m := pred_le_pred H theorem le_succ_of_pred_le {n m : ℕ} (H : pred n ≤ m) : n ≤ succ m := by cases n;exact le.step H;exact succ_le_succ H theorem not_succ_le_self {n : ℕ} : ¬succ n ≤ n := by induction n with n IH;all_goals intros;cases a;apply IH;exact le_of_succ_le_succ a theorem zero_le (n : ℕ) : 0 ≤ n := by induction n with n IH;apply le.refl;exact le.step IH theorem lt.step {n m : ℕ} (H : n < m) : n < succ m := le.step H theorem zero_lt_succ (n : ℕ) : 0 < succ n := by induction n with n IH;apply le.refl;exact le.step IH theorem lt.trans [trans] {n m k : ℕ} (H1 : n < m) (H2 : m < k) : n < k := le.trans (le.step H1) H2 theorem lt_of_le_of_lt [trans] {n m k : ℕ} (H1 : n ≤ m) (H2 : m < k) : n < k := le.trans (succ_le_succ H1) H2 theorem lt_of_lt_of_le [trans] {n m k : ℕ} (H1 : n < m) (H2 : m ≤ k) : n < k := le.trans H1 H2 theorem le.antisymm {n m : ℕ} (H1 : n ≤ m) (H2 : m ≤ n) : n = m := begin cases H1 with m' H1', { reflexivity}, { cases H2 with n' H2', { reflexivity}, { exfalso, apply not_succ_le_self, exact lt.trans H1' H2'}}, end theorem not_succ_le_zero (n : ℕ) : ¬succ n ≤ zero := by intro H; cases H theorem lt.irrefl (n : ℕ) : ¬n < n := not_succ_le_self theorem self_lt_succ (n : ℕ) : n < succ n := !le.refl theorem lt.base (n : ℕ) : n < succ n := !le.refl theorem le_lt_antisymm {n m : ℕ} (H1 : n ≤ m) (H2 : m < n) : false := !lt.irrefl (lt_of_le_of_lt H1 H2) theorem lt_le_antisymm {n m : ℕ} (H1 : n < m) (H2 : m ≤ n) : false := le_lt_antisymm H2 H1 theorem lt.asymm {n m : ℕ} (H1 : n < m) (H2 : m < n) : false := le_lt_antisymm (le_of_lt H1) H2 definition lt.by_cases {a b : ℕ} {P : Type} (H1 : a < b → P) (H2 : a = b → P) (H3 : b < a → P) : P := begin revert b H1 H2 H3, induction a with a IH, { intros, cases b, exact H2 rfl, exact H1 !zero_lt_succ}, { intros, cases b with b, exact H3 !zero_lt_succ, { apply IH, intro H, exact H1 (succ_le_succ H), intro H, exact H2 (congr rfl H), intro H, exact H3 (succ_le_succ H)}} end theorem lt.trichotomy (a b : ℕ) : a < b ∨ a = b ∨ b < a := lt.by_cases (λH, inl H) (λH, inr (inl H)) (λH, inr (inr H)) definition lt_ge_by_cases {a b : ℕ} {P : Type} (H1 : a < b → P) (H2 : a ≥ b → P) : P := lt.by_cases H1 (λH, H2 (le_of_eq H⁻¹)) (λH, H2 (le_of_lt H)) theorem lt_or_ge (a b : ℕ) : (a < b) ∨ (a ≥ b) := lt_ge_by_cases inl inr definition not_lt_zero (a : ℕ) : ¬ a < zero := by intro H; cases H -- less-than is well-founded definition lt.wf [instance] : well_founded lt := begin constructor, intro n, induction n with n IH, { constructor, intros n H, exfalso, exact !not_lt_zero H}, { constructor, intros m H, assert aux : ∀ {n₁} (hlt : m < n₁), succ n = n₁ → acc lt m, { intros n₁ hlt, induction hlt, { intro p, injection p with q, exact q ▸ IH}, { intro p, injection p with q, exact (acc.inv (q ▸ IH) a)}}, apply aux H rfl}, end definition measure {A : Type} (f : A → ℕ) : A → A → Prop := inv_image lt f definition measure.wf {A : Type} (f : A → ℕ) : well_founded (measure f) := inv_image.wf f lt.wf theorem succ_lt_succ {a b : ℕ} (H : a < b) : succ a < succ b := succ_le_succ H theorem lt_of_succ_lt {a b : ℕ} (H : succ a < b) : a < b := le_of_succ_le H theorem lt_of_succ_lt_succ {a b : ℕ} (H : succ a < succ b) : a < b := le_of_succ_le_succ H definition decidable_le [instance] : decidable_rel le := begin intros n, induction n with n IH, { intro m, left, apply zero_le}, { intro m, cases m with m, { right, apply not_succ_le_zero}, { let H := IH m, clear IH, cases H with H H, left, exact succ_le_succ H, right, intro H2, exact H (le_of_succ_le_succ H2)}} end definition decidable_lt [instance] : decidable_rel lt := _ definition decidable_gt [instance] : decidable_rel gt := _ definition decidable_ge [instance] : decidable_rel ge := _ theorem eq_or_lt_of_le {a b : ℕ} (H : a ≤ b) : a = b ∨ a < b := by cases H with b' H; exact inl rfl; exact inr (succ_le_succ H) theorem le_of_eq_or_lt {a b : ℕ} (H : a = b ∨ a < b) : a ≤ b := by cases H with H H; exact le_of_eq H; exact le_of_lt H theorem eq_or_lt_of_not_lt {a b : ℕ} (hnlt : ¬ a < b) : a = b ∨ b < a := or.rec_on (lt.trichotomy a b) (λ hlt, absurd hlt hnlt) (λ h, h) theorem lt_succ_of_le {a b : ℕ} (h : a ≤ b) : a < succ b := succ_le_succ h theorem lt_of_succ_le {a b : ℕ} (h : succ a ≤ b) : a < b := h theorem succ_le_of_lt {a b : ℕ} (h : a < b) : succ a ≤ b := h definition max (a b : ℕ) : ℕ := if a < b then b else a definition min (a b : ℕ) : ℕ := if a < b then a else b theorem max_self (a : ℕ) : max a a = a := eq.rec_on !if_t_t rfl theorem max_eq_right' {a b : ℕ} (H : a < b) : max a b = b := if_pos H -- different versions will be defined in algebra theorem max_eq_left' {a b : ℕ} (H : ¬ a < b) : max a b = a := if_neg H theorem eq_max_right {a b : ℕ} (H : a < b) : b = max a b := eq.rec_on (max_eq_right' H) rfl theorem eq_max_left {a b : ℕ} (H : ¬ a < b) : a = max a b := eq.rec_on (max_eq_left' H) rfl theorem le_max_left (a b : ℕ) : a ≤ max a b := by_cases (λ h : a < b, le_of_lt (eq.rec_on (eq_max_right h) h)) (λ h : ¬ a < b, eq.rec_on (eq_max_left h) !le.refl) theorem le_max_right (a b : ℕ) : b ≤ max a b := by_cases (λ h : a < b, eq.rec_on (eq_max_right h) !le.refl) (λ h : ¬ a < b, or.rec_on (eq_or_lt_of_not_lt h) (λ heq, eq.rec_on heq (eq.rec_on (eq.symm (max_self a)) !le.refl)) (λ h : b < a, have aux : a = max a b, from eq_max_left (lt.asymm h), eq.rec_on aux (le_of_lt h))) theorem succ_sub_succ_eq_sub (a b : ℕ) : succ a - succ b = a - b := by induction b with b IH;reflexivity; apply congr (eq.refl pred) IH theorem sub_eq_succ_sub_succ (a b : ℕ) : a - b = succ a - succ b := eq.rec_on (succ_sub_succ_eq_sub a b) rfl theorem zero_sub_eq_zero (a : ℕ) : zero - a = zero := nat.rec_on a rfl (λ a₁ (ih : zero - a₁ = zero), congr (eq.refl pred) ih) theorem zero_eq_zero_sub (a : ℕ) : zero = zero - a := eq.rec_on (zero_sub_eq_zero a) rfl theorem sub_lt {a b : ℕ} : zero < a → zero < b → a - b < a := have aux : Π {a}, zero < a → Π {b}, zero < b → a - b < a, from λa h₁, le.rec_on h₁ (λb h₂, le.cases_on h₂ (lt.base zero) (λ b₁ bpos, eq.rec_on (sub_eq_succ_sub_succ zero b₁) (eq.rec_on (zero_eq_zero_sub b₁) (lt.base zero)))) (λa₁ apos ih b h₂, le.cases_on h₂ (lt.base a₁) (λ b₁ bpos, eq.rec_on (sub_eq_succ_sub_succ a₁ b₁) (lt.trans (@ih b₁ bpos) (lt.base a₁)))), λ h₁ h₂, aux h₁ h₂ theorem sub_le (a b : ℕ) : a - b ≤ a := nat.rec_on b (le.refl a) (λ b₁ ih, le.trans !pred_le ih) lemma sub_lt_succ (a b : ℕ) : a - b < succ a := lt_succ_of_le (sub_le a b) end nat