/- Copyright (c) 2016 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Temporary file; move in Lean3. -/ import data.set algebra.order_bigops import data.finset data.list.sort -- move this to init.function section open function postfix `^~` :std.prec.max_plus := swap end -- move to algebra theorem eq_of_inv_mul_eq_one {A : Type} {a b : A} [group A] (H : b⁻¹ * a = 1) : a = b := have a⁻¹ * 1 = a⁻¹, by inst_simp, by inst_simp -- move to init.quotient namespace quot open classical variables {A : Type} [s : setoid A] protected theorem exists_eq_mk (x : quot s) : ∃ a : A, x = ⟦a⟧ := quot.induction_on x (take a, exists.intro _ rfl) protected noncomputable definition repr (x : quot s) : A := some (quot.exists_eq_mk x) protected theorem mk_repr_eq (x : quot s) : ⟦ quot.repr x ⟧ = x := eq.symm (some_spec (quot.exists_eq_mk x)) open setoid include s protected theorem repr_mk_equiv (a : A) : quot.repr ⟦a⟧ ≈ a := quot.exact (by rewrite quot.mk_repr_eq) end quot -- move to data.set.basic -- move to algebra.ring theorem mul_two {A : Type} [semiring A] (a : A) : a * 2 = a + a := by rewrite [-one_add_one_eq_two, left_distrib, +mul_one] theorem two_mul {A : Type} [semiring A] (a : A) : 2 * a = a + a := by rewrite [-one_add_one_eq_two, right_distrib, +one_mul] -- move to data.set namespace set open function lemma inter_eq_self_of_subset {X : Type} {s t : set X} (Hst : s ⊆ t) : s ∩ t = s := ext (take x, iff.intro (assume H, !inter_subset_left H) (assume H, and.intro H (Hst H))) lemma inter_eq_self_of_subset_right {X : Type} {s t : set X} (Hst : t ⊆ s) : s ∩ t = t := by rewrite [inter_comm]; apply inter_eq_self_of_subset Hst proposition diff_self_inter {X : Type} (s t : set X) : s \ (s ∩ t) = s \ t := by rewrite [*diff_eq, compl_inter, inter_distrib_left, inter_compl_self, empty_union] proposition diff_eq_diff {X : Type} {s t u : set X} (H : s ∩ u = s ∩ t) : s \ u = s \ t := by rewrite [-diff_self_inter, H, diff_self_inter] -- classical proposition inter_eq_inter_of_diff_eq_diff {X : Type} {s t u : set X} (H : s \ u = s \ t) : s ∩ u = s ∩ t := by rewrite [-compl_compl u, -compl_compl t]; apply diff_eq_diff H proposition compl_inter_eq_compl_inter {X : Type} {s t u : set X} (H : u ∩ s = t ∩ s) : -u ∩ s = -t ∩ s := by rewrite [*inter_comm _ s]; apply diff_eq_diff; rewrite [*inter_comm s, H] proposition inter_eq_inter_of_compl_inter_eq_compl_inter {X : Type} {s t u : set X} (H : -u ∩ s = -t ∩ s) : u ∩ s = t ∩ s := begin rewrite [*inter_comm _ s], apply inter_eq_inter_of_diff_eq_diff, rewrite [*diff_eq, *inter_comm s, H] end proposition singleton_subset_of_mem {X : Type} {x : X} {s : set X} (xs : x ∈ s) : '{x} ⊆ s := take y, assume yx, have y = x, from eq_of_mem_singleton yx, by rewrite this; exact xs proposition mem_of_singleton_subset {X : Type} {x : X} {s : set X} (xs : '{x} ⊆ s) : x ∈ s := xs !mem_singleton proposition singleton_subset_iff {X : Type} (x : X) (s : set X) : '{x} ⊆ s ↔ x ∈ s := iff.intro mem_of_singleton_subset singleton_subset_of_mem theorem singleton_subset {X : Type} {a : X} {s : set X} (H : a ∈ s) : '{a} ⊆ s := take b, suppose b ∈ '{a}, have b = a, from eq_of_mem_singleton this, show b ∈ s, by rewrite this; assumption lemma inter_eq_inter_left {X : Type} {s t u : set X} (H₁ : s ∩ t ⊆ u) (H₂ : s ∩ u ⊆ t) : s ∩ t = s ∩ u := eq_of_subset_of_subset (subset_inter (inter_subset_left _ _) H₁) (subset_inter (inter_subset_left _ _) H₂) lemma inter_eq_inter_right {X : Type} {s t u : set X} (H₁ : s ∩ t ⊆ u) (H₂ : u ∩ t ⊆ s) : s ∩ t = u ∩ t := eq_of_subset_of_subset (subset_inter H₁ (inter_subset_right _ _)) (subset_inter H₂ (inter_subset_right _ _)) proposition sUnion_subset {X : Type} {S : set (set X)} {t : set X} (H : ∀₀ u ∈ S, u ⊆ t) : ⋃₀ S ⊆ t := take x, assume Hx, obtain u [uS xu], from Hx, H uS xu proposition subset_of_sUnion_subset {X : Type} {S : set (set X)} {t : set X} (H : ⋃₀ S ⊆ t) {u : set X} (Hu : u ∈ S) : u ⊆ t := λ x xu, H (exists.intro u (and.intro Hu xu)) proposition preimage_Union {I X Y : Type} (f : X → Y) (u : I → set Y) : f '- (⋃ i, u i) = ⋃ i, (f '- (u i)) := ext (take x, !iff.refl) -- TODO: rename "injective" to "inj" -- TODO: turn around equality in definition of image -- TODO: use ∀₀ in definition of injective (and define notation for ∀₀ x y ∈ s, ...) attribute [trans] subset.trans -- really? this was never declared? And all the variants... proposition mem_set_of_iff {X : Type} (P : X → Prop) (a : X) : a ∈ { x : X | P x } ↔ P a := iff.refl _ proposition mem_set_of {X : Type} {P : X → Prop} {a : X} (Pa : P a) : a ∈ { x : X | P x } := Pa proposition of_mem_set_of {X : Type} {P : X → Prop} {a : X} (H : a ∈ { x : X | P x }) : P a := H proposition forallb_of_forall {X : Type} {P : X → Prop} (s : set X) (H : ∀ x, P x) : ∀₀ x ∈ s, P x := λ x xs, H x proposition forall_of_forallb_univ {X : Type} {P : X → Prop} (H : ∀₀ x ∈ univ, P x) : ∀ x, P x := λ x, H trivial proposition forallb_univ_iff_forall {X : Type} (P : X → Prop) : (∀₀ x ∈ univ, P x) ↔ ∀ x, P x := iff.intro forall_of_forallb_univ !forallb_of_forall proposition forallb_of_subset {X : Type} {s t : set X} {P : X → Prop} (ssubt : s ⊆ t) (Ht : ∀₀ x ∈ t, P x) : ∀₀ x ∈ s, P x := λ x xs, Ht (ssubt xs) proposition forallb_of_forall₂ {X Y : Type} {P : X → Y → Prop} (s : set X) (t : set Y) (H : ∀ x y, P x y) : ∀₀ x ∈ s, ∀₀ y ∈ t, P x y := λ x xs y yt, H x y proposition forall_of_forallb_univ₂ {X Y : Type} {P : X → Y → Prop} (H : ∀₀ x ∈ univ, ∀₀ y ∈ univ, P x y) : ∀ x y, P x y := λ x y, H trivial trivial proposition forallb_univ_iff_forall₂ {X Y : Type} (P : X → Y → Prop) : (∀₀ x ∈ univ, ∀₀ y ∈ univ, P x y) ↔ ∀ x y, P x y := iff.intro forall_of_forallb_univ₂ !forallb_of_forall₂ proposition forallb_of_subset₂ {X Y : Type} {s₁ t₁ : set X} {s₂ t₂ : set Y} {P : X → Y → Prop} (ssubt₁ : s₁ ⊆ t₁) (ssubt₂ : s₂ ⊆ t₂) (Ht : ∀₀ x ∈ t₁, ∀₀ y ∈ t₂, P x y) : ∀₀ x ∈ s₁, ∀₀ y ∈ s₂, P x y := λ x xs y ys, Ht (ssubt₁ xs) (ssubt₂ ys) theorem maps_to_univ {X Y : Type} (f : X → Y) (a : set X) : maps_to f a univ := take x, assume H, trivial theorem surj_on_image {X Y : Type} (f : X → Y) (a : set X) : surj_on f a (f ' a) := λ y Hy, Hy theorem image_eq_univ_of_surjective {X Y : Type} {f : X → Y} (H : surjective f) : f ' univ = univ := ext (take y, iff.intro (λ H', trivial) (λ H', obtain x xeq, from H y, show y ∈ f ' univ, from mem_image trivial xeq)) proposition image_inter_subset {X Y : Type} (f : X → Y) (s t : set X) : f ' (s ∩ t) ⊆ f ' s ∩ f ' t := take y, assume ymem, obtain x [[xs xt] (xeq : f x = y)], from ymem, show y ∈ f ' s ∩ f ' t, begin rewrite -xeq, exact (and.intro (mem_image_of_mem f xs) (mem_image_of_mem f xt)) end --proposition image_eq_of_maps_to_of_surj_on {X Y : Type} {f : X → Y} {s : set X} {t : set Y} -- (H : maps_to f s t) (H' : surj_on f s t) : -- f ' s = t := --eq_of_subset_of_subset (image_subset_of_maps_to H) H' proposition surj_on_of_image_eq {X Y : Type} {f : X → Y} {s : set X} {t : set Y} (H : f ' s = t) : surj_on f s t := by rewrite [↑surj_on, H]; apply subset.refl proposition surjective_induction {X Y : Type} {P : Y → Prop} {f : X → Y} (surjf : surjective f) (H : ∀ x, P (f x)) : ∀ y, P y := take y, obtain x (yeq : f x = y), from surjf y, show P y, by rewrite -yeq; apply H x proposition surjective_induction₂ {X Y : Type} {P : Y → Y → Prop} {f : X → Y} (surjf : surjective f) (H : ∀ x₁ x₂, P (f x₁) (f x₂)) : ∀ y₁ y₂, P y₁ y₂ := take y₁ y₂, obtain x₁ (y₁eq : f x₁ = y₁), from surjf y₁, obtain x₂ (y₂eq : f x₂ = y₂), from surjf y₂, show P y₁ y₂, by rewrite [-y₁eq, -y₂eq]; apply H x₁ x₂ proposition surj_on_univ_induction {X Y : Type} {P : Y → Prop} {f : X → Y} {s : set X} (surjfs : surj_on f s univ) (H : ∀₀ x ∈ s, P (f x)) : ∀ y, P y := take y, obtain x [xs (yeq : f x = y)], from surjfs trivial, show P y, by rewrite -yeq; apply H xs proposition surj_on_univ_induction₂ {X Y : Type} {P : Y → Y → Prop} {f : X → Y} {s : set X} (surjfs : surj_on f s univ) (H : ∀₀ x₁ ∈ s, ∀₀ x₂ ∈ s, P (f x₁) (f x₂)) : ∀ y₁ y₂, P y₁ y₂ := take y₁ y₂, obtain x₁ [x₁s (y₁eq : f x₁ = y₁)], from surjfs trivial, obtain x₂ [x₂s (y₂eq : f x₂ = y₂)], from surjfs trivial, show P y₁ y₂, by rewrite [-y₁eq, -y₂eq]; apply H x₁s x₂s proposition surj_on_univ_of_surjective {X Y : Type} {f : X → Y} (s : set Y) (H : surjective f) : surj_on f univ s := take y, assume ys, obtain x yeq, from H y, mem_image !mem_univ yeq proposition mem_of_mem_image_of_injective {X Y : Type} {f : X → Y} {s : set X} {a : X} (injf : injective f) (H : f a ∈ f ' s) : a ∈ s := obtain b [bs faeq], from H, have b = a, from injf faeq, by rewrite -this; apply bs proposition mem_of_mem_image_of_inj_on {X Y : Type} {f : X → Y} {s t : set X} {a : X} (Ha : a ∈ t) (Hs : s ⊆ t) (injft : inj_on f t) (H : f a ∈ f ' s) : a ∈ s := obtain b [bs faeq], from H, have b = a, from injft (Hs bs) Ha faeq, by rewrite -this; apply bs proposition eq_singleton_of_forall_eq {A : Type} {s : set A} {x : A} (xs : x ∈ s) (H : ∀₀ y ∈ s, y = x) : s = '{x} := ext (take y, iff.intro (assume ys, mem_singleton_of_eq (H ys)) (assume yx, by rewrite (eq_of_mem_singleton yx); assumption)) proposition insert_subset {A : Type} {s t : set A} {a : A} (amem : a ∈ t) (ssubt : s ⊆ t) : insert a s ⊆ t := take x, assume xias, or.elim (eq_or_mem_of_mem_insert xias) (by simp) (take H, ssubt H) -- move to data.set.finite lemma finite_sUnion {A : Type} {S : set (set A)} [H : finite S] : (∀s, s ∈ S → finite s) → finite ⋃₀S := induction_on_finite S (by intro H; rewrite sUnion_empty; apply finite_empty) (take a s, assume fins anins ih h, begin rewrite sUnion_insert, apply finite_union, {apply h _ (mem_insert a s)}, apply ih (forall_of_forall_insert h) end) lemma subset_powerset_sUnion {A : Type} (S : set (set A)) : S ⊆ 𝒫 (⋃₀ S) := take u, suppose u ∈ S, show u ⊆ ⋃₀ S, from subset_sUnion_of_mem this lemma finite_of_finite_sUnion {A : Type} (S : set (set A)) (H : finite ⋃₀S) : finite S := have finite (𝒫 (⋃₀ S)), from finite_powerset _, show finite S, from finite_subset (subset_powerset_sUnion S) section nat open nat proposition ne_empty_of_card_pos {A : Type} {s : set A} (H : card s > 0) : s ≠ ∅ := take H', begin rewrite [H' at H, card_empty at H], exact lt.irrefl 0 H end lemma eq_of_card_eq_one {A : Type} {S : set A} (H : card S = 1) {x y : A} (Hx : x ∈ S) (Hy : y ∈ S) : x = y := have finite S, from classical.by_contradiction (assume nfinS, begin rewrite (card_of_not_finite nfinS) at H, contradiction end), classical.by_contradiction (assume H0 : x ≠ y, have H1 : '{x, y} ⊆ S, from insert_subset Hx (insert_subset Hy (empty_subset _)), have x ∉ '{y}, from assume H, H0 (eq_of_mem_singleton H), have 2 ≤ 1, from calc 2 = card '{x, y} : by rewrite [card_insert_of_not_mem this, card_insert_of_not_mem (not_mem_empty _), card_empty] ... ≤ card S : card_le_card_of_subset H1 ... = 1 : H, show false, from dec_trivial this) proposition eq_singleton_of_card_eq_one {A : Type} {s : set A} {x : A} (H : card s = 1) (xs : x ∈ s) : s = '{x} := eq_singleton_of_forall_eq xs (take y, assume ys, eq.symm (eq_of_card_eq_one H xs ys)) proposition exists_eq_singleton_of_card_eq_one {A : Type} {s : set A} (H : card s = 1) : ∃ x, s = '{x} := have s ≠ ∅, from ne_empty_of_card_pos (by rewrite H; apply dec_trivial), obtain (x : A) (xs : x ∈ s), from exists_mem_of_ne_empty this, exists.intro x (eq_singleton_of_card_eq_one H xs) end nat -- move to data.set.classical_inverse (and rename file to "inverse") theorem inv_fun_spec {X Y : Type} {f : X → Y} {a : set X} {dflt : X} {x : X} (xa : x ∈ a) : f (inv_fun f a dflt (f x)) = f x := and.right (inv_fun_pos (exists.intro x (and.intro xa rfl))) theorem inv_fun_spec' {X Y : Type} {f : X → Y} {a : set X} {dflt : X} {x : X} (xa : x ∈ a) : inv_fun f a dflt (f x) ∈ a := and.left (inv_fun_pos (exists.intro x (and.intro xa rfl))) -- TODO: move to data.set.filter namespace filter protected theorem le_iff {X : Type} (F₁ F₂ : filter X) : F₁ ≤ F₂ ↔ F₂ ⊆ F₁ := iff.refl _ -- TODO: change names of fields in filter -- TODO: reorder hypotheses in eventually_of_le, and change "le" to "ge" -- TODO: fix eventually_inf: implicit argument, and use implication -- TODO: set: add spaces around ∀₀ x ∈ s and ∃₀ x ∈ s theorem eventually_inf_left {X : Type} {P : X → Prop} {F₁ : filter X} (F₂ : filter X) (H : eventually P F₁) : eventually P (inf F₁ F₂) := eventually_of_le H !inf_le_left theorem eventually_inf_right {X : Type} {P : X → Prop} (F₁ : filter X) {F₂ : filter X} (H : eventually P F₂) : eventually P (inf F₁ F₂) := eventually_of_le H !inf_le_right theorem eventually_Inf {X : Type} {P : X → Prop} {S : set (filter X)} {F : filter X} (FS : F ∈ S) (H : eventually P F) : eventually P (Inf S) := eventually_of_le H (Inf_le FS) -- TODO: replace definition of Inf with this definition Inf' {X : Type} (S : set (filter X)) : filter X := ⦃ filter, sets := { s | ∃ T : set (set X), finite T ∧ T ⊆ (⋃ F ∈ S, sets F) ∧ ⋂₀ T ⊆ s}, univ_mem_sets := abstract have H : (⋂₀ ∅) ⊆ @univ X, by rewrite sInter_empty; apply subset.refl, exists.intro ∅ (and.intro !finite_empty (and.intro (empty_subset _) H)) end, inter_closed := abstract take s t, assume Hs Ht, obtain Ts finTs Tssub ITs, from Hs, obtain Tt finTt Ttsub ITt, from Ht, have H1 : finite (Ts ∪ Tt), proof finite_union Ts Tt qed, have H2 : Ts ∪ Tt ⊆ (⋃ F ∈ S, sets F), from union_subset Tssub Ttsub, have H3 : ⋂₀ (Ts ∪ Tt) ⊆ s ∩ t, begin rewrite sInter_union, apply subset_inter, {exact subset.trans (inter_subset_left _ _) ITs}, exact subset.trans (inter_subset_right _ _) ITt end, exists.intro _ (and.intro H1 (and.intro H2 H3)) end, is_mono := abstract take s t ssubt Hs, obtain T finT Tsub IT, from Hs, exists.intro T (and.intro finT (and.intro Tsub (subset.trans IT ssubt))) end ⦄ theorem sets_Inf' {A : Type} (S : set (filter A)) : sets (Inf' S) = { s | ∃ T : set (set A), finite T ∧ T ⊆ (⋃ F ∈ S, sets F) ∧ ⋂₀ T ⊆ s} := rfl theorem sInter_mem_of_finite {A : Type} {F : filter A} {T : set (set A)} (finT : finite T) (Tsub : T ⊆ sets F) : ⋂₀ T ∈ sets F := begin induction finT with a T finT aninT ih, {rewrite sInter_empty, apply filter.univ_mem_sets}, rewrite sInter_insert, apply filter.inter_closed, show a ∈ sets F, from Tsub (mem_insert a T), show ⋂₀ T ∈ sets F, from ih (subset.trans (subset_insert _ _) Tsub) end theorem le_Inf' {A : Type} {F : filter A} {S : set (filter A)} (H : ∀₀ G ∈ S, F ≤ G) : F ≤ Inf' S := filter.le_of_subset (take s, suppose s ∈ sets (Inf' S), obtain (T : set (set A)) finT (Tsub : T ⊆ (⋃ G ∈ S, sets G)) (IT : ⋂₀ T ⊆ s), from this, have T ⊆ sets F, from subset.trans Tsub (bUnion_subset H), have ⋂₀ T ∈ sets F, from sInter_mem_of_finite finT this, show s ∈ sets F, from filter.is_mono _ IT this) theorem Inf'_le {A : Type} {F : filter A} {S : set (filter A)} (FS : F ∈ S) : Inf' S ≤ F := filter.le_of_subset (take s, suppose s ∈ sets F, have '{s} ⊆ ⋃ G ∈ S, sets G, from singleton_subset (mem_bUnion FS this), exists.intro '{s} (and.intro _ (and.intro this (by rewrite sInter_singleton; apply subset.refl)))) theorem Inf_eq_Inf' {A : Type} (S : set (filter A)) : Inf S = Inf' S := le.antisymm (le_Inf' (λ F FS, Inf_le FS)) (le_Inf (λ F FS, Inf'_le FS)) theorem exists_eventually_of_eventually_Inf {A : Type} {P : A → Prop} {F : filter A} {S : set (filter A)} (FS : F ∈ S) (H' : eventually P (Inf S)) (H : ∀₀ F₁ ∈ S, ∀₀ F₂ ∈ S, ∃₀ F ∈ S, F ≤ inf F₁ F₂) : ∃₀ F ∈ S, eventually P F := have P ∈ Inf' S, by rewrite -Inf_eq_Inf'; apply H', have ∃ T : set (set A), finite T ∧ T ⊆ (⋃ F ∈ S, sets F) ∧ ⋂₀ T ⊆ P, by rewrite sets_Inf' at this; exact this, obtain T finT Tsub ITP, from this, have ∃₀ F ∈ S, ⋂₀ T ∈ F, begin clear ITP, induction finT with s T finT sninT ih, {exact exists.intro F (and.intro FS (by rewrite sInter_empty; apply filter.univ_mem_sets))}, have ∃₀ F ∈ S, ⋂₀ T ∈ F, from ih (subset.trans (subset_insert _ _) Tsub), cases this with F₁ H₁, cases H₁ with F₁S ITF₁, have s ∈ (⋃ F ∈ S, sets F), from Tsub !mem_insert, cases this with F₂ H₂, cases H₂ with F₂S sF₂, cases H F₁S F₂S with F' HF', cases HF' with F'S F'le, existsi F', split, exact F'S, show ⋂₀ insert s T ∈ sets F', begin rewrite sInter_insert, apply filter.inter_closed, show s ∈ sets F', from filter.subset_of_le (le.trans F'le !inf_le_right) sF₂, show ⋂₀ T ∈ sets F', from filter.subset_of_le (le.trans F'le !inf_le_left) ITF₁, end end, obtain F FS IT, from this, exists.intro F (and.intro FS (filter.is_mono _ ITP IT)) end filter end set -- move to data.finset namespace finset section variables {A : Type} [decidable_linear_order A] definition finset_to_list (s : finset A) : list A := quot.lift_on s (take l, list.sort le (subtype.elt_of l)) (take a b, assume eqab, list.sort_eq_of_perm eqab) proposition to_finset_finset_to_list (s : finset A) : to_finset (finset_to_list s) = s := quot.induction_on s begin intro l, have H : list.nodup (list.sort le (subtype.elt_of l)), from perm.nodup_of_perm_of_nodup (perm.symm !list.sort_perm) (subtype.has_property l), rewrite [↑finset_to_list, -to_finset_eq_of_nodup H], apply quot.sound, apply list.sort_perm end proposition nodup_finset_to_list (s : finset A) : list.nodup (finset_to_list s) := quot.induction_on s (take l, perm.nodup_of_perm_of_nodup (perm.symm !list.sort_perm) (subtype.has_property l)) proposition sorted_finset_to_list (s : finset A) : list.sorted le (finset_to_list s) := quot.induction_on s (take l, list.sorted_of_strongly_sorted (list.strongly_sorted_sort _)) end end finset -- move to data.nat? namespace nat open finset theorem succ_Max₀_not_mem (s : finset ℕ) : succ (Max₀ s) ∉ s := suppose succ (Max₀ s) ∈ s, have succ (Max₀ s) ≤ Max₀ s, from le_Max₀ this, show false, from not_succ_le_self this end nat