/* Copyright (c) 2013 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura */ #pragma once #include #include #include #include #include "util/rc.h" #include "util/name.h" #include "util/hash.h" #include "util/buffer.h" #include "util/sexpr/format.h" #include "kernel/level.h" namespace lean { class value; /* ======================================= Expressions expr ::= Var idx | Constant name | Value value | App [expr] | Lambda name expr expr | Pi name expr expr | Type universe | Eq expr expr (heterogeneous equality) | Let name expr expr expr TODO(Leo): match expressions. The main API is divided in the following sections - Testers - Constructors - Accessors - Miscellaneous ======================================= */ enum class expr_kind { Var, Constant, Value, App, Lambda, Pi, Type, Eq, Let }; /** \brief Base class used to represent expressions. In principle, the expr_cell class and subclasses should be located in the .cpp file. However, this is performance critical code, and we want to be able to have inline definitions. */ class expr_cell { protected: unsigned short m_kind; std::atomic_ushort m_flags; unsigned m_hash; MK_LEAN_RC(); // Declare m_rc counter void dealloc(); bool max_shared() const { return (m_flags & 1) != 0; } void set_max_shared() { m_flags |= 1; } friend class max_sharing_fn; bool is_closed() const { return (m_flags & 2) != 0; } void set_closed() { m_flags |= 2; } friend class has_free_var_fn; public: expr_cell(expr_kind k, unsigned h); expr_kind kind() const { return static_cast(m_kind); } unsigned hash() const { return m_hash; } }; /** \brief Exprs for encoding formulas/expressions, types and proofs. */ class expr { private: expr_cell * m_ptr; explicit expr(expr_cell * ptr):m_ptr(ptr) {} public: expr():m_ptr(nullptr) {} expr(expr const & s):m_ptr(s.m_ptr) { if (m_ptr) m_ptr->inc_ref(); } expr(expr && s):m_ptr(s.m_ptr) { s.m_ptr = nullptr; } ~expr() { if (m_ptr) m_ptr->dec_ref(); } static expr const & null(); friend void swap(expr & a, expr & b) { std::swap(a.m_ptr, b.m_ptr); } void release() { if (m_ptr) m_ptr->dec_ref(); m_ptr = nullptr; } expr & operator=(expr const & s) { LEAN_COPY_REF(expr, s); } expr & operator=(expr && s) { LEAN_MOVE_REF(expr, s); } expr_kind kind() const { return m_ptr->kind(); } unsigned hash() const { return m_ptr ? m_ptr->hash() : 23; } expr_cell * raw() const { return m_ptr; } operator bool() const { return m_ptr != nullptr; } friend expr mk_var(unsigned idx); friend expr mk_constant(name const & n); friend expr mk_value(value & v); friend expr mk_app(unsigned num_args, expr const * args); friend expr mk_eq(expr const & l, expr const & r); friend expr mk_lambda(name const & n, expr const & t, expr const & e); friend expr mk_pi(name const & n, expr const & t, expr const & e); friend expr mk_type(level const & l); friend expr mk_let(name const & n, expr const & t, expr const & v, expr const & e); friend bool is_eqp(expr const & a, expr const & b) { return a.m_ptr == b.m_ptr; } // Overloaded operator() can be used to create applications expr operator()(expr const & a1) const; expr operator()(expr const & a1, expr const & a2) const; expr operator()(expr const & a1, expr const & a2, expr const & a3) const; expr operator()(expr const & a1, expr const & a2, expr const & a3, expr const & a4) const; expr operator()(expr const & a1, expr const & a2, expr const & a3, expr const & a4, expr const & a5) const; expr operator()(expr const & a1, expr const & a2, expr const & a3, expr const & a4, expr const & a5, expr const & a6) const; expr operator()(expr const & a1, expr const & a2, expr const & a3, expr const & a4, expr const & a5, expr const & a6, expr const & a7) const; }; // ======================================= // Expr (internal) Representation /** \brief Free variables. They are encoded using de Bruijn's indices. */ class expr_var : public expr_cell { unsigned m_vidx; // de Bruijn index public: expr_var(unsigned idx); unsigned get_vidx() const { return m_vidx; } }; /** \brief Constants. */ class expr_const : public expr_cell { name m_name; public: expr_const(name const & n); name const & get_name() const { return m_name; } }; /** \brief Function Applications */ class expr_app : public expr_cell { unsigned m_num_args; expr m_args[0]; friend expr mk_app(unsigned num_args, expr const * args); public: expr_app(unsigned size); ~expr_app(); unsigned get_num_args() const { return m_num_args; } expr const & get_arg(unsigned idx) const { lean_assert(idx < m_num_args); return m_args[idx]; } expr const * begin_args() const { return m_args; } expr const * end_args() const { return m_args + m_num_args; } }; /** \brief Heterogeneous equality */ class expr_eq : public expr_cell { expr m_lhs; expr m_rhs; public: expr_eq(expr const & lhs, expr const & rhs); ~expr_eq(); expr const & get_lhs() const { return m_lhs; } expr const & get_rhs() const { return m_rhs; } }; /** \brief Super class for lambda abstraction and pi (functional spaces). */ class expr_abstraction : public expr_cell { name m_name; expr m_domain; expr m_body; public: expr_abstraction(expr_kind k, name const & n, expr const & t, expr const & e); name const & get_name() const { return m_name; } expr const & get_domain() const { return m_domain; } expr const & get_body() const { return m_body; } }; /** \brief Lambda abstractions */ class expr_lambda : public expr_abstraction { public: expr_lambda(name const & n, expr const & t, expr const & e); }; /** \brief (dependent) Functional spaces */ class expr_pi : public expr_abstraction { public: expr_pi(name const & n, expr const & t, expr const & e); }; /** \brief Let expressions */ class expr_let : public expr_cell { name m_name; expr m_type; expr m_value; expr m_body; public: expr_let(name const & n, expr const & t, expr const & v, expr const & b); ~expr_let(); name const & get_name() const { return m_name; } expr const & get_type() const { return m_type; } expr const & get_value() const { return m_value; } expr const & get_body() const { return m_body; } }; /** \brief Type */ class expr_type : public expr_cell { level m_level; public: expr_type(level const & l); ~expr_type(); level const & get_level() const { return m_level; } }; /** \brief Base class for semantic attachment cells. */ class value { void dealloc() { delete this; } MK_LEAN_RC(); public: value():m_rc(0) {} virtual ~value() {} virtual expr get_type() const = 0; virtual name get_name() const = 0; virtual name get_unicode_name() const; virtual bool normalize(unsigned num_args, expr const * args, expr & r) const; virtual bool operator==(value const & other) const; virtual void display(std::ostream & out) const; virtual format pp() const; virtual format pp(bool unicode) const; virtual unsigned hash() const; }; /** \brief Semantic attachments */ class expr_value : public expr_cell { value & m_val; friend expr copy(expr const & a); public: expr_value(value & v); ~expr_value(); value const & get_value() const { return m_val; } }; // ======================================= // ======================================= // Testers inline bool is_var(expr_cell * e) { return e->kind() == expr_kind::Var; } inline bool is_constant(expr_cell * e) { return e->kind() == expr_kind::Constant; } inline bool is_value(expr_cell * e) { return e->kind() == expr_kind::Value; } inline bool is_app(expr_cell * e) { return e->kind() == expr_kind::App; } inline bool is_eq(expr_cell * e) { return e->kind() == expr_kind::Eq; } inline bool is_lambda(expr_cell * e) { return e->kind() == expr_kind::Lambda; } inline bool is_pi(expr_cell * e) { return e->kind() == expr_kind::Pi; } inline bool is_type(expr_cell * e) { return e->kind() == expr_kind::Type; } inline bool is_let(expr_cell * e) { return e->kind() == expr_kind::Let; } inline bool is_abstraction(expr_cell * e) { return is_lambda(e) || is_pi(e); } inline bool is_var(expr const & e) { return e.kind() == expr_kind::Var; } inline bool is_constant(expr const & e) { return e.kind() == expr_kind::Constant; } inline bool is_value(expr const & e) { return e.kind() == expr_kind::Value; } inline bool is_app(expr const & e) { return e.kind() == expr_kind::App; } inline bool is_eq(expr const & e) { return e.kind() == expr_kind::Eq; } inline bool is_lambda(expr const & e) { return e.kind() == expr_kind::Lambda; } inline bool is_pi(expr const & e) { return e.kind() == expr_kind::Pi; } bool is_arrow(expr const & e); inline bool is_type(expr const & e) { return e.kind() == expr_kind::Type; } inline bool is_let(expr const & e) { return e.kind() == expr_kind::Let; } inline bool is_abstraction(expr const & e) { return is_lambda(e) || is_pi(e); } // ======================================= // ======================================= // Constructors inline expr mk_var(unsigned idx) { return expr(new expr_var(idx)); } inline expr Var(unsigned idx) { return mk_var(idx); } inline expr mk_constant(name const & n) { return expr(new expr_const(n)); } inline expr Const(name const & n) { return mk_constant(n); } inline expr mk_value(value & v) { return expr(new expr_value(v)); } inline expr to_expr(value & v) { return mk_value(v); } expr mk_app(unsigned num_args, expr const * args); inline expr mk_app(std::initializer_list const & l) { return mk_app(l.size(), l.begin()); } inline expr mk_app(expr const & e1, expr const & e2) { return mk_app({e1, e2}); } inline expr mk_app(expr const & e1, expr const & e2, expr const & e3) { return mk_app({e1, e2, e3}); } inline expr mk_app(expr const & e1, expr const & e2, expr const & e3, expr const & e4) { return mk_app({e1, e2, e3, e4}); } inline expr mk_app(expr const & e1, expr const & e2, expr const & e3, expr const & e4, expr const & e5) { return mk_app({e1, e2, e3, e4, e5}); } inline expr mk_eq(expr const & l, expr const & r) { return expr(new expr_eq(l, r)); } inline expr Eq(expr const & l, expr const & r) { return mk_eq(l, r); } inline expr mk_lambda(name const & n, expr const & t, expr const & e) { return expr(new expr_lambda(n, t, e)); } inline expr mk_pi(name const & n, expr const & t, expr const & e) { return expr(new expr_pi(n, t, e)); } inline expr mk_arrow(expr const & t, expr const & e) { return mk_pi(name("_"), t, e); } inline expr operator>>(expr const & t, expr const & e) { return mk_arrow(t, e); } inline expr mk_let(name const & n, expr const & t, expr const & v, expr const & e) { return expr(new expr_let(n, t, v, e)); } inline expr mk_type(level const & l) { return expr(new expr_type(l)); } expr mk_type(); inline expr Type(level const & l) { return mk_type(l); } inline expr Type() { return mk_type(); } inline expr expr::operator()(expr const & a1) const { return mk_app({*this, a1}); } inline expr expr::operator()(expr const & a1, expr const & a2) const { return mk_app({*this, a1, a2}); } inline expr expr::operator()(expr const & a1, expr const & a2, expr const & a3) const { return mk_app({*this, a1, a2, a3}); } inline expr expr::operator()(expr const & a1, expr const & a2, expr const & a3, expr const & a4) const { return mk_app({*this, a1, a2, a3, a4}); } inline expr expr::operator()(expr const & a1, expr const & a2, expr const & a3, expr const & a4, expr const & a5) const { return mk_app({*this, a1, a2, a3, a4, a5}); } inline expr expr::operator()(expr const & a1, expr const & a2, expr const & a3, expr const & a4, expr const & a5, expr const & a6) const { return mk_app({*this, a1, a2, a3, a4, a5, a6}); } inline expr expr::operator()(expr const & a1, expr const & a2, expr const & a3, expr const & a4, expr const & a5, expr const & a6, expr const & a7) const { return mk_app({*this, a1, a2, a3, a4, a5, a6, a7}); } // ======================================= // ======================================= // Casting (these functions are only needed for low-level code) inline expr_var * to_var(expr_cell * e) { lean_assert(is_var(e)); return static_cast(e); } inline expr_const * to_constant(expr_cell * e) { lean_assert(is_constant(e)); return static_cast(e); } inline expr_app * to_app(expr_cell * e) { lean_assert(is_app(e)); return static_cast(e); } inline expr_eq * to_eq(expr_cell * e) { lean_assert(is_eq(e)); return static_cast(e); } inline expr_abstraction * to_abstraction(expr_cell * e) { lean_assert(is_abstraction(e)); return static_cast(e); } inline expr_lambda * to_lambda(expr_cell * e) { lean_assert(is_lambda(e)); return static_cast(e); } inline expr_pi * to_pi(expr_cell * e) { lean_assert(is_pi(e)); return static_cast(e); } inline expr_type * to_type(expr_cell * e) { lean_assert(is_type(e)); return static_cast(e); } inline expr_let * to_let(expr_cell * e) { lean_assert(is_let(e)); return static_cast(e); } inline expr_var * to_var(expr const & e) { return to_var(e.raw()); } inline expr_const * to_constant(expr const & e) { return to_constant(e.raw()); } inline expr_app * to_app(expr const & e) { return to_app(e.raw()); } inline expr_eq * to_eq(expr const & e) { return to_eq(e.raw()); } inline expr_abstraction * to_abstraction(expr const & e) { return to_abstraction(e.raw()); } inline expr_lambda * to_lambda(expr const & e) { return to_lambda(e.raw()); } inline expr_pi * to_pi(expr const & e) { return to_pi(e.raw()); } inline expr_let * to_let(expr const & e) { return to_let(e.raw()); } inline expr_type * to_type(expr const & e) { return to_type(e.raw()); } // ======================================= // ======================================= // Accessors inline unsigned get_rc(expr_cell * e) { return e->get_rc(); } inline bool is_shared(expr_cell * e) { return get_rc(e) > 1; } inline unsigned var_idx(expr_cell * e) { return to_var(e)->get_vidx(); } inline bool is_var(expr_cell * e, unsigned i) { return is_var(e) && var_idx(e) == i; } inline name const & const_name(expr_cell * e) { return to_constant(e)->get_name(); } inline value const & to_value(expr_cell * e) { lean_assert(is_value(e)); return static_cast(e)->get_value(); } inline unsigned num_args(expr_cell * e) { return to_app(e)->get_num_args(); } inline expr const & arg(expr_cell * e, unsigned idx) { return to_app(e)->get_arg(idx); } inline expr const & eq_lhs(expr_cell * e) { return to_eq(e)->get_lhs(); } inline expr const & eq_rhs(expr_cell * e) { return to_eq(e)->get_rhs(); } inline name const & abst_name(expr_cell * e) { return to_abstraction(e)->get_name(); } inline expr const & abst_domain(expr_cell * e) { return to_abstraction(e)->get_domain(); } inline expr const & abst_body(expr_cell * e) { return to_abstraction(e)->get_body(); } inline level const & ty_level(expr_cell * e) { return to_type(e)->get_level(); } inline name const & let_name(expr_cell * e) { return to_let(e)->get_name(); } inline expr const & let_value(expr_cell * e) { return to_let(e)->get_value(); } inline expr const & let_type(expr_cell * e) { return to_let(e)->get_type(); } inline expr const & let_body(expr_cell * e) { return to_let(e)->get_body(); } /** \brief Return the reference counter of the given expression. */ inline unsigned get_rc(expr const & e) { return e.raw()->get_rc(); } /** \brief Return true iff the reference counter of the given expression is greater than 1. */ inline bool is_shared(expr const & e) { return get_rc(e) > 1; } /** \brief Return the de Bruijn index of the given expression. \pre is_var(e) */ inline unsigned var_idx(expr const & e) { return to_var(e)->get_vidx(); } /** \brief Return true iff the given expression is a variable with de Bruijn index equal to \c i. */ inline bool is_var(expr const & e, unsigned i) { return is_var(e) && var_idx(e) == i; } inline name const & const_name(expr const & e) { return to_constant(e)->get_name(); } /** \brief Return true iff the given expression is a constant with name \c n. */ inline bool is_constant(expr const & e, name const & n) { return is_constant(e) && const_name(e) == n; } inline value const & to_value(expr const & e) { return to_value(e.raw()); } inline unsigned num_args(expr const & e) { return to_app(e)->get_num_args(); } inline expr const & arg(expr const & e, unsigned idx) { return to_app(e)->get_arg(idx); } inline expr const * begin_args(expr const & e) { return to_app(e)->begin_args(); } inline expr const * end_args(expr const & e) { return to_app(e)->end_args(); } inline expr const & eq_lhs(expr const & e) { return to_eq(e)->get_lhs(); } inline expr const & eq_rhs(expr const & e) { return to_eq(e)->get_rhs(); } inline name const & abst_name(expr const & e) { return to_abstraction(e)->get_name(); } inline expr const & abst_domain(expr const & e) { return to_abstraction(e)->get_domain(); } inline expr const & abst_body(expr const & e) { return to_abstraction(e)->get_body(); } inline level const & ty_level(expr const & e) { return to_type(e)->get_level(); } inline name const & let_name(expr const & e) { return to_let(e)->get_name(); } inline expr const & let_type(expr const & e) { return to_let(e)->get_type(); } inline expr const & let_value(expr const & e) { return to_let(e)->get_value(); } inline expr const & let_body(expr const & e) { return to_let(e)->get_body(); } // ======================================= // ======================================= // Structural equality bool operator==(expr const & a, expr const & b); inline bool operator!=(expr const & a, expr const & b) { return !operator==(a, b); } // ======================================= // ======================================= // Expression+Offset typedef std::pair expr_offset; typedef std::pair expr_cell_offset; // ======================================= // ======================================= // Auxiliary functionals /** \brief Functional object for hashing kernel expressions. */ struct expr_hash { unsigned operator()(expr const & e) const { return e.hash(); } }; /** \brief Functional object for testing pointer equality between kernel expressions. */ struct expr_eqp { bool operator()(expr const & e1, expr const & e2) const { return is_eqp(e1, e2); } }; /** \brief Functional object for hashing kernel expression cells. */ struct expr_cell_hash { unsigned operator()(expr_cell * e) const { return e->hash(); } }; /** \brief Functional object for testing pointer equality between kernel cell expressions. */ struct expr_cell_eqp { bool operator()(expr_cell * e1, expr_cell * e2) const { return e1 == e2; } }; /** \brief Functional object for hashing a pair (n, k) where n is a kernel expressions, and k is an offset. */ struct expr_offset_hash { unsigned operator()(expr_offset const & p) const { return hash(p.first.hash(), p.second); } }; /** \brief Functional object for comparing pairs (expression, offset). */ struct expr_offset_eqp { unsigned operator()(expr_offset const & p1, expr_offset const & p2) const { return is_eqp(p1.first, p2.first) && p1.second == p2.second; } }; /** \brief Functional object for hashing a pair (n, k) where n is a kernel cell expressions, and k is an offset. */ struct expr_cell_offset_hash { unsigned operator()(expr_cell_offset const & p) const { return hash(p.first->hash(), p.second); } }; /** \brief Functional object for comparing pairs (expression cell, offset). */ struct expr_cell_offset_eqp { unsigned operator()(expr_cell_offset const & p1, expr_cell_offset const & p2) const { return p1 == p2; } }; // ======================================= // ======================================= // Miscellaneous /** \brief Wrapper for iterating over application arguments. If \c n is an application, it allows us to write \code for (expr const & arg : app_args(n)) { ... do something with argument } \endcode */ struct args { expr const & m_app; args(expr const & a):m_app(a) { lean_assert(is_app(a)); } expr const * begin() const { return &arg(m_app, 0); } expr const * end() const { return begin() + num_args(m_app); } }; /** \brief Return a shallow copy of \c e */ expr copy(expr const & e); // ======================================= // ======================================= // Update template expr update_app(expr const & e, F f) { static_assert(std::is_same::type, expr>::value, "update_app: return type of f is not expr"); buffer new_args; bool modified = false; for (expr const & a : args(e)) { new_args.push_back(f(a)); if (!is_eqp(a, new_args.back())) modified = true; } if (modified) return mk_app(new_args.size(), new_args.data()); else return e; } template expr update_abst(expr const & e, F f) { static_assert(std::is_same::type, std::pair>::value, "update_abst: return type of f is not pair"); expr const & old_t = abst_domain(e); expr const & old_b = abst_body(e); std::pair p = f(old_t, old_b); if (!is_eqp(p.first, old_t) || !is_eqp(p.second, old_b)) { name const & n = abst_name(e); return is_pi(e) ? mk_pi(n, p.first, p.second) : mk_lambda(n, p.first, p.second); } else { return e; } } template expr update_let(expr const & e, F f) { static_assert(std::is_same::type, std::tuple>::value, "update_let: return type of f is not pair"); expr const & old_t = let_type(e); expr const & old_v = let_value(e); expr const & old_b = let_body(e); std::tuple t = f(old_t, old_v, old_b); if (!is_eqp(std::get<0>(t), old_t) || !is_eqp(std::get<1>(t), old_v) || !is_eqp(std::get<2>(t), old_b)) return mk_let(let_name(e), std::get<0>(t), std::get<1>(t), std::get<2>(t)); else return e; } template expr update_eq(expr const & e, F f) { static_assert(std::is_same::type, std::pair>::value, "update_eq: return type of f is not pair"); expr const & old_l = eq_lhs(e); expr const & old_r = eq_rhs(e); std::pair p = f(old_l, old_r); if (!is_eqp(p.first, old_l) || !is_eqp(p.second, old_r)) return mk_eq(p.first, p.second); else return e; } // ======================================= }