/- Copyright (c) 2014 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer, Floris van Doorn Ported from Coq HoTT -/ import arity .eq .bool .unit .sigma open is_trunc eq prod sigma nat equiv option is_equiv bool unit structure pointed [class] (A : Type) := (point : A) structure Pointed := {carrier : Type} (Point : carrier) open Pointed namespace pointed attribute Pointed.carrier [coercion] variables {A B : Type} definition pt [unfold 2] [H : pointed A] := point A protected abbreviation Mk [constructor] := @Pointed.mk protected definition mk' [constructor] (A : Type) [H : pointed A] : Pointed := Pointed.mk (point A) definition pointed_carrier [instance] [constructor] (A : Pointed) : pointed A := pointed.mk (Point A) -- Any contractible type is pointed definition pointed_of_is_contr [instance] [priority 800] [constructor] (A : Type) [H : is_contr A] : pointed A := pointed.mk !center -- A pi type with a pointed target is pointed definition pointed_pi [instance] [constructor] (P : A → Type) [H : Πx, pointed (P x)] : pointed (Πx, P x) := pointed.mk (λx, pt) -- A sigma type of pointed components is pointed definition pointed_sigma [instance] [constructor] (P : A → Type) [G : pointed A] [H : pointed (P pt)] : pointed (Σx, P x) := pointed.mk ⟨pt,pt⟩ definition pointed_prod [instance] [constructor] (A B : Type) [H1 : pointed A] [H2 : pointed B] : pointed (A × B) := pointed.mk (pt,pt) definition pointed_loop [instance] [constructor] (a : A) : pointed (a = a) := pointed.mk idp definition pointed_bool [instance] [constructor] : pointed bool := pointed.mk ff definition Bool [constructor] : Pointed := pointed.mk' bool definition pointed_fun_closed [constructor] (f : A → B) [H : pointed A] : pointed B := pointed.mk (f pt) definition Loop_space [reducible] [constructor] (A : Pointed) : Pointed := pointed.mk' (point A = point A) -- definition Iterated_loop_space : Pointed → ℕ → Pointed -- | Iterated_loop_space A 0 := A -- | Iterated_loop_space A (n+1) := Iterated_loop_space (Loop_space A) n definition Iterated_loop_space [unfold 1] [reducible] (n : ℕ) (A : Pointed) : Pointed := nat.rec_on n (λA, A) (λn IH A, IH (Loop_space A)) A prefix `Ω`:(max+5) := Loop_space notation `Ω[`:95 n:0 `]`:0 A:95 := Iterated_loop_space n A definition refln [constructor] {A : Pointed} {n : ℕ} : Ω[n] A := pt definition iterated_loop_space [unfold 3] (A : Type) [H : pointed A] (n : ℕ) : Type := Ω[n] (pointed.mk' A) open equiv.ops definition Pointed_eq {A B : Pointed} (f : A ≃ B) (p : f pt = pt) : A = B := begin cases A with A a, cases B with B b, esimp at *, fapply apd011 @Pointed.mk, { apply ua f}, { rewrite [cast_ua,p]}, end definition add_point [constructor] (A : Type) : Pointed := Pointed.mk (none : option A) postfix `₊`:(max+1) := add_point -- the inclusion A → A₊ is called "some", the extra point "pt" or "none" ("@none A") end pointed open pointed structure pmap (A B : Pointed) := (map : A → B) (resp_pt : map (Point A) = Point B) open pmap namespace pointed abbreviation respect_pt [unfold 3] := @pmap.resp_pt notation `map₊` := pmap infix `→*`:30 := pmap attribute pmap.map [coercion] variables {A B C D : Pointed} {f g h : A →* B} definition pmap_eq (r : Πa, f a = g a) (s : respect_pt f = (r pt) ⬝ respect_pt g) : f = g := begin cases f with f p, cases g with g q, esimp at *, fapply apo011 pmap.mk, { exact eq_of_homotopy r}, { apply concato_eq, apply pathover_eq_Fl, apply inv_con_eq_of_eq_con, rewrite [ap_eq_ap10,↑ap10,apd10_eq_of_homotopy,s]} end definition pid [constructor] (A : Pointed) : A →* A := pmap.mk function.id idp definition pcompose [constructor] (g : B →* C) (f : A →* B) : A →* C := pmap.mk (λa, g (f a)) (ap g (respect_pt f) ⬝ respect_pt g) infixr `∘*`:60 := pcompose structure phomotopy (f g : A →* B) := (homotopy : f ~ g) (homotopy_pt : homotopy pt ⬝ respect_pt g = respect_pt f) infix `~*`:50 := phomotopy abbreviation to_homotopy_pt [unfold 5] := @phomotopy.homotopy_pt abbreviation to_homotopy [coercion] [unfold 5] (p : f ~* g) : Πa, f a = g a := phomotopy.homotopy p definition passoc (h : C →* D) (g : B →* C) (f : A →* B) : (h ∘* g) ∘* f ~* h ∘* (g ∘* f) := begin fconstructor, intro a, reflexivity, cases A, cases B, cases C, cases D, cases f with f pf, cases g with g pg, cases h with h ph, esimp at *, induction pf, induction pg, induction ph, reflexivity end definition pid_comp (f : A →* B) : pid B ∘* f ~* f := begin fconstructor, { intro a, reflexivity}, { esimp, exact !idp_con ⬝ !ap_id⁻¹} end definition comp_pid (f : A →* B) : f ∘* pid A ~* f := begin fconstructor, { intro a, reflexivity}, { reflexivity} end definition pmap_equiv_left (A : Type) (B : Pointed) : A₊ →* B ≃ (A → B) := begin fapply equiv.MK, { intro f a, cases f with f p, exact f (some a)}, { intro f, fconstructor, intro a, cases a, exact pt, exact f a, reflexivity}, { intro f, reflexivity}, { intro f, cases f with f p, esimp, fapply pmap_eq, { intro a, cases a; all_goals (esimp at *), exact p⁻¹}, { esimp, exact !con.left_inv⁻¹}}, end -- definition Loop_space_functor (f : A →* B) : Ω A →* Ω B := -- begin -- fapply pmap.mk, -- { intro p, exact ap f p}, -- end -- set_option pp.notation false -- definition pmap_equiv_right (A : Pointed) (B : Type) -- : (Σ(b : B), map₊ A (pointed.Mk b)) ≃ (A → B) := -- begin -- fapply equiv.MK, -- { intro u a, cases u with b f, cases f with f p, esimp at f, exact f a}, -- { intro f, refine ⟨f pt, _⟩, fapply pmap.mk, -- intro a, esimp, exact f a, -- reflexivity}, -- { intro f, reflexivity}, -- { intro u, cases u with b f, cases f with f p, esimp at *, apply sigma_eq p, -- esimp, apply sorry -- } -- end definition pmap_bool_equiv (B : Pointed) : map₊ Bool B ≃ B := begin fapply equiv.MK, { intro f, cases f with f p, exact f tt}, { intro b, fconstructor, intro u, cases u, exact pt, exact b, reflexivity}, { intro b, reflexivity}, { intro f, cases f with f p, esimp, fapply pmap_eq, { intro a, cases a; all_goals (esimp at *), exact p⁻¹}, { esimp, exact !con.left_inv⁻¹}}, end definition apn [unfold 3] (n : ℕ) (f : map₊ A B) : Ω[n] A →* Ω[n] B := begin revert A B f, induction n with n IH, { intros A B f, exact f}, { intros A B f, esimp, apply IH (Ω A), { esimp, fconstructor, intro q, refine !respect_pt⁻¹ ⬝ ap f q ⬝ !respect_pt, esimp, apply con.left_inv}} end definition ap1 [constructor] (f : A →* B) : Ω A →* Ω B := apn (succ 0) f definition ap1_compose (g : B →* C) (f : A →* B) : ap1 (g ∘* f) ~* ap1 g ∘* ap1 f := begin induction B, induction C, induction g with g pg, induction f with f pf, esimp at *, induction pg, induction pf, fconstructor, { intro p, esimp, apply whisker_left, exact ap_compose g f p ⬝ ap (ap g) !idp_con⁻¹}, { reflexivity} end protected definition phomotopy.refl [refl] (f : A →* B) : f ~* f := begin fconstructor, { intro a, exact idp}, { apply idp_con} end protected definition phomotopy.trans [trans] (p : f ~* g) (q : g ~* h) : f ~* h := begin fconstructor, { intro a, exact p a ⬝ q a}, { induction f, induction g, induction p with p p', induction q with q q', esimp at *, induction p', induction q', esimp, apply con.assoc} end protected definition phomotopy.symm [symm] (p : f ~* g) : g ~* f := begin fconstructor, { intro a, exact (p a)⁻¹}, { induction f, induction p with p p', esimp at *, induction p', esimp, apply inv_con_cancel_left} end infix `⬝*`:75 := phomotopy.trans postfix `⁻¹*`:(max+1) := phomotopy.symm definition eq_of_phomotopy (p : f ~* g) : f = g := begin fapply pmap_eq, { intro a, exact p a}, { exact !to_homotopy_pt⁻¹} end definition pwhisker_left (h : B →* C) (p : f ~* g) : h ∘* f ~* h ∘* g := begin fconstructor, { intro a, exact ap h (p a)}, { induction A, induction B, induction C, induction f with f pf, induction g with g pg, induction h with h ph, induction p with p p', esimp at *, induction ph, induction pg, induction p', reflexivity} end definition pwhisker_right (h : C →* A) (p : f ~* g) : f ∘* h ~* g ∘* h := begin fconstructor, { intro a, exact p (h a)}, { induction A, induction B, induction C, induction f with f pf, induction g with g pg, induction h with h ph, induction p with p p', esimp at *, induction ph, induction pg, induction p', esimp, exact !idp_con⁻¹} end structure pequiv (A B : Pointed) := (to_pmap : A →* B) (is_equiv_to_pmap : is_equiv to_pmap) infix `≃*`:25 := pequiv attribute pequiv.to_pmap [coercion] attribute pequiv.is_equiv_to_pmap [instance] definition equiv_of_pequiv [constructor] (f : A ≃* B) : A ≃ B := equiv.mk f _ end pointed