/- Copyright (c) 2015 Leonardo de Moura. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura Set-like operations on lists -/ import data.list.basic data.list.comb open nat function decidable helper_tactics eq.ops namespace list section erase variable {A : Type} variable [H : decidable_eq A] include H definition erase (a : A) : list A → list A | [] := [] | (b::l) := match H a b with | inl e := l | inr n := b :: erase l end lemma erase_nil (a : A) : erase a [] = [] := rfl lemma erase_cons_head (a : A) (l : list A) : erase a (a :: l) = l := show match H a a with | inl e := l | inr n := a :: erase a l end = l, by rewrite decidable_eq_inl_refl lemma erase_cons_tail {a b : A} (l : list A) : a ≠ b → erase a (b::l) = b :: erase a l := assume h : a ≠ b, show match H a b with | inl e := l | inr n₁ := b :: erase a l end = b :: erase a l, by rewrite (decidable_eq_inr_neg h) lemma length_erase_of_mem {a : A} : ∀ {l}, a ∈ l → length (erase a l) = pred (length l) | [] h := rfl | [x] h := by rewrite [mem_singleton h, erase_cons_head] | (x::y::xs) h := by_cases (λ aeqx : a = x, by rewrite [aeqx, erase_cons_head]) (λ anex : a ≠ x, assert ainyxs : a ∈ y::xs, from or_resolve_right h anex, by rewrite [erase_cons_tail _ anex, *length_cons, length_erase_of_mem ainyxs]) lemma length_erase_of_not_mem {a : A} : ∀ {l}, a ∉ l → length (erase a l) = length l | [] h := rfl | (x::xs) h := assert anex : a ≠ x, from λ aeqx : a = x, absurd (or.inl aeqx) h, assert aninxs : a ∉ xs, from λ ainxs : a ∈ xs, absurd (or.inr ainxs) h, by rewrite [erase_cons_tail _ anex, length_cons, length_erase_of_not_mem aninxs] lemma erase_append_left {a : A} : ∀ {l₁} (l₂), a ∈ l₁ → erase a (l₁++l₂) = erase a l₁ ++ l₂ | [] l₂ h := absurd h !not_mem_nil | (x::xs) l₂ h := by_cases (λ aeqx : a = x, by rewrite [aeqx, append_cons, *erase_cons_head]) (λ anex : a ≠ x, assert ainxs : a ∈ xs, from mem_of_ne_of_mem anex h, by rewrite [append_cons, *erase_cons_tail _ anex, erase_append_left l₂ ainxs]) lemma erase_append_right {a : A} : ∀ {l₁} (l₂), a ∉ l₁ → erase a (l₁++l₂) = l₁ ++ erase a l₂ | [] l₂ h := rfl | (x::xs) l₂ h := by_cases (λ aeqx : a = x, by rewrite aeqx at h; exact (absurd !mem_cons h)) (λ anex : a ≠ x, assert nainxs : a ∉ xs, from not_mem_of_not_mem_cons h, by rewrite [append_cons, *erase_cons_tail _ anex, erase_append_right l₂ nainxs]) lemma erase_sub (a : A) : ∀ l, erase a l ⊆ l | [] := λ x xine, xine | (x::xs) := λ y xine, by_cases (λ aeqx : a = x, by rewrite [aeqx at xine, erase_cons_head at xine]; exact (or.inr xine)) (λ anex : a ≠ x, assert yinxe : y ∈ x :: erase a xs, by rewrite [erase_cons_tail _ anex at xine]; exact xine, assert subxs : erase a xs ⊆ xs, from erase_sub xs, by_cases (λ yeqx : y = x, by rewrite yeqx; apply mem_cons) (λ ynex : y ≠ x, assert yine : y ∈ erase a xs, from mem_of_ne_of_mem ynex yinxe, assert yinxs : y ∈ xs, from subxs yine, or.inr yinxs)) theorem mem_erase_of_ne_of_mem {a b : A} : ∀ {l : list A}, a ≠ b → a ∈ l → a ∈ erase b l | [] n i := absurd i !not_mem_nil | (c::l) n i := by_cases (λ beqc : b = c, assert ainl : a ∈ l, from or.elim (eq_or_mem_of_mem_cons i) (λ aeqc : a = c, absurd aeqc (beqc ▸ n)) (λ ainl : a ∈ l, ainl), by rewrite [beqc, erase_cons_head]; exact ainl) (λ bnec : b ≠ c, by_cases (λ aeqc : a = c, assert aux : a ∈ c :: erase b l, by rewrite [aeqc]; exact !mem_cons, by rewrite [erase_cons_tail _ bnec]; exact aux) (λ anec : a ≠ c, have ainl : a ∈ l, from mem_of_ne_of_mem anec i, have ainel : a ∈ erase b l, from mem_erase_of_ne_of_mem n ainl, assert aux : a ∈ c :: erase b l, from mem_cons_of_mem _ ainel, by rewrite [erase_cons_tail _ bnec]; exact aux)) -- theorem mem_of_mem_erase {a b : A} : ∀ {l}, a ∈ erase b l → a ∈ l | [] i := absurd i !not_mem_nil | (c::l) i := by_cases (λ beqc : b = c, by rewrite [beqc at i, erase_cons_head at i]; exact (mem_cons_of_mem _ i)) (λ bnec : b ≠ c, have i₁ : a ∈ c :: erase b l, by rewrite [erase_cons_tail _ bnec at i]; exact i, or.elim (eq_or_mem_of_mem_cons i₁) (λ aeqc : a = c, by rewrite [aeqc]; exact !mem_cons) (λ ainel : a ∈ erase b l, have ainl : a ∈ l, from mem_of_mem_erase ainel, mem_cons_of_mem _ ainl)) theorem all_erase_of_all {p : A → Prop} (a : A) : ∀ {l}, all l p → all (erase a l) p | [] h := by rewrite [erase_nil]; exact h | (b::l) h := assert h₁ : all l p, from all_of_all_cons h, have h₂ : all (erase a l) p, from all_erase_of_all h₁, have pb : p b, from of_all_cons h, assert h₃ : all (b :: erase a l) p, from all_cons_of_all pb h₂, by_cases (λ aeqb : a = b, by rewrite [aeqb, erase_cons_head]; exact h₁) (λ aneb : a ≠ b, by rewrite [erase_cons_tail _ aneb]; exact h₃) end erase /- disjoint -/ section disjoint variable {A : Type} definition disjoint (l₁ l₂ : list A) : Prop := ∀ ⦃a⦄, (a ∈ l₁ → a ∈ l₂ → false) lemma disjoint_left {l₁ l₂ : list A} : disjoint l₁ l₂ → ∀ {a}, a ∈ l₁ → a ∉ l₂ := λ d a, d a lemma disjoint_right {l₁ l₂ : list A} : disjoint l₁ l₂ → ∀ {a}, a ∈ l₂ → a ∉ l₁ := λ d a i₂ i₁, d a i₁ i₂ lemma disjoint.comm {l₁ l₂ : list A} : disjoint l₁ l₂ → disjoint l₂ l₁ := λ d a i₂ i₁, d a i₁ i₂ lemma disjoint_of_disjoint_cons_left {a : A} {l₁ l₂} : disjoint (a::l₁) l₂ → disjoint l₁ l₂ := λ d x xinl₁, disjoint_left d (or.inr xinl₁) lemma disjoint_of_disjoint_cons_right {a : A} {l₁ l₂} : disjoint l₁ (a::l₂) → disjoint l₁ l₂ := λ d, disjoint.comm (disjoint_of_disjoint_cons_left (disjoint.comm d)) lemma disjoint_nil_left (l : list A) : disjoint [] l := λ a ab, absurd ab !not_mem_nil lemma disjoint_nil_right (l : list A) : disjoint l [] := disjoint.comm (disjoint_nil_left l) lemma disjoint_cons_of_not_mem_of_disjoint {a : A} {l₁ l₂} : a ∉ l₂ → disjoint l₁ l₂ → disjoint (a::l₁) l₂ := λ nainl₂ d x (xinal₁ : x ∈ a::l₁), or.elim (eq_or_mem_of_mem_cons xinal₁) (λ xeqa : x = a, xeqa⁻¹ ▸ nainl₂) (λ xinl₁ : x ∈ l₁, disjoint_left d xinl₁) lemma disjoint_of_disjoint_append_left_left : ∀ {l₁ l₂ l : list A}, disjoint (l₁++l₂) l → disjoint l₁ l | [] l₂ l d := disjoint_nil_left l | (x::xs) l₂ l d := have nxinl : x ∉ l, from disjoint_left d !mem_cons, have d₁ : disjoint (xs++l₂) l, from disjoint_of_disjoint_cons_left d, have d₂ : disjoint xs l, from disjoint_of_disjoint_append_left_left d₁, disjoint_cons_of_not_mem_of_disjoint nxinl d₂ lemma disjoint_of_disjoint_append_left_right : ∀ {l₁ l₂ l : list A}, disjoint (l₁++l₂) l → disjoint l₂ l | [] l₂ l d := d | (x::xs) l₂ l d := have d₁ : disjoint (xs++l₂) l, from disjoint_of_disjoint_cons_left d, disjoint_of_disjoint_append_left_right d₁ lemma disjoint_of_disjoint_append_right_left : ∀ {l₁ l₂ l : list A}, disjoint l (l₁++l₂) → disjoint l l₁ := λ l₁ l₂ l d, disjoint.comm (disjoint_of_disjoint_append_left_left (disjoint.comm d)) lemma disjoint_of_disjoint_append_right_right : ∀ {l₁ l₂ l : list A}, disjoint l (l₁++l₂) → disjoint l l₂ := λ l₁ l₂ l d, disjoint.comm (disjoint_of_disjoint_append_left_right (disjoint.comm d)) end disjoint /- no duplicates predicate -/ inductive nodup {A : Type} : list A → Prop := | ndnil : nodup [] | ndcons : ∀ {a l}, a ∉ l → nodup l → nodup (a::l) section nodup open nodup variables {A B : Type} theorem nodup_nil : @nodup A [] := ndnil theorem nodup_cons {a : A} {l : list A} : a ∉ l → nodup l → nodup (a::l) := λ i n, ndcons i n theorem nodup_singleton (a : A) : nodup [a] := nodup_cons !not_mem_nil nodup_nil theorem nodup_of_nodup_cons : ∀ {a : A} {l : list A}, nodup (a::l) → nodup l | a xs (ndcons i n) := n theorem not_mem_of_nodup_cons : ∀ {a : A} {l : list A}, nodup (a::l) → a ∉ l | a xs (ndcons i n) := i theorem not_nodup_cons_of_mem {a : A} {l : list A} : a ∈ l → ¬ nodup (a :: l) := λ ainl d, absurd ainl (not_mem_of_nodup_cons d) theorem not_nodup_cons_of_not_nodup {a : A} {l : list A} : ¬ nodup l → ¬ nodup (a :: l) := λ nd d, absurd (nodup_of_nodup_cons d) nd theorem nodup_of_nodup_append_left : ∀ {l₁ l₂ : list A}, nodup (l₁++l₂) → nodup l₁ | [] l₂ n := nodup_nil | (x::xs) l₂ n := have ndxs : nodup xs, from nodup_of_nodup_append_left (nodup_of_nodup_cons n), have nxinxsl₂ : x ∉ xs++l₂, from not_mem_of_nodup_cons n, have nxinxs : x ∉ xs, from not_mem_of_not_mem_append_left nxinxsl₂, nodup_cons nxinxs ndxs theorem nodup_of_nodup_append_right : ∀ {l₁ l₂ : list A}, nodup (l₁++l₂) → nodup l₂ | [] l₂ n := n | (x::xs) l₂ n := nodup_of_nodup_append_right (nodup_of_nodup_cons n) theorem disjoint_of_nodup_append : ∀ {l₁ l₂ : list A}, nodup (l₁++l₂) → disjoint l₁ l₂ | [] l₂ d := disjoint_nil_left l₂ | (x::xs) l₂ d := have d₁ : nodup (x::(xs++l₂)), from d, have d₂ : nodup (xs++l₂), from nodup_of_nodup_cons d₁, have nxin : x ∉ xs++l₂, from not_mem_of_nodup_cons d₁, have nxinl₂ : x ∉ l₂, from not_mem_of_not_mem_append_right nxin, have dsj : disjoint xs l₂, from disjoint_of_nodup_append d₂, λ a (ainxxs : a ∈ x::xs), or.elim (eq_or_mem_of_mem_cons ainxxs) (λ aeqx : a = x, aeqx⁻¹ ▸ nxinl₂) (λ ainxs : a ∈ xs, disjoint_left dsj ainxs) theorem nodup_append_of_nodup_of_nodup_of_disjoint : ∀ {l₁ l₂ : list A}, nodup l₁ → nodup l₂ → disjoint l₁ l₂ → nodup (l₁++l₂) | [] l₂ d₁ d₂ dsj := by rewrite [append_nil_left]; exact d₂ | (x::xs) l₂ d₁ d₂ dsj := have dsj₁ : disjoint xs l₂, from disjoint_of_disjoint_cons_left dsj, have ndxs : nodup xs, from nodup_of_nodup_cons d₁, have ndxsl₂ : nodup (xs++l₂), from nodup_append_of_nodup_of_nodup_of_disjoint ndxs d₂ dsj₁, have nxinxs : x ∉ xs, from not_mem_of_nodup_cons d₁, have nxinl₂ : x ∉ l₂, from disjoint_left dsj !mem_cons, have nxinxsl₂ : x ∉ xs++l₂, from not_mem_append nxinxs nxinl₂, nodup_cons nxinxsl₂ ndxsl₂ theorem nodup_app_comm {l₁ l₂ : list A} (d : nodup (l₁++l₂)) : nodup (l₂++l₁) := have d₁ : nodup l₁, from nodup_of_nodup_append_left d, have d₂ : nodup l₂, from nodup_of_nodup_append_right d, have dsj : disjoint l₁ l₂, from disjoint_of_nodup_append d, nodup_append_of_nodup_of_nodup_of_disjoint d₂ d₁ (disjoint.comm dsj) theorem nodup_head {a : A} {l₁ l₂ : list A} (d : nodup (l₁++(a::l₂))) : nodup (a::(l₁++l₂)) := have d₁ : nodup (a::(l₂++l₁)), from nodup_app_comm d, have d₂ : nodup (l₂++l₁), from nodup_of_nodup_cons d₁, have d₃ : nodup (l₁++l₂), from nodup_app_comm d₂, have nain : a ∉ l₂++l₁, from not_mem_of_nodup_cons d₁, have nain₂ : a ∉ l₂, from not_mem_of_not_mem_append_left nain, have nain₁ : a ∉ l₁, from not_mem_of_not_mem_append_right nain, nodup_cons (not_mem_append nain₁ nain₂) d₃ theorem nodup_middle {a : A} {l₁ l₂ : list A} (d : nodup (a::(l₁++l₂))) : nodup (l₁++(a::l₂)) := have d₁ : nodup (l₁++l₂), from nodup_of_nodup_cons d, have nain : a ∉ l₁++l₂, from not_mem_of_nodup_cons d, have disj : disjoint l₁ l₂, from disjoint_of_nodup_append d₁, have d₂ : nodup l₁, from nodup_of_nodup_append_left d₁, have d₃ : nodup l₂, from nodup_of_nodup_append_right d₁, have nain₂ : a ∉ l₂, from not_mem_of_not_mem_append_right nain, have nain₁ : a ∉ l₁, from not_mem_of_not_mem_append_left nain, have d₄ : nodup (a::l₂), from nodup_cons nain₂ d₃, have disj₂ : disjoint l₁ (a::l₂), from disjoint.comm (disjoint_cons_of_not_mem_of_disjoint nain₁ (disjoint.comm disj)), nodup_append_of_nodup_of_nodup_of_disjoint d₂ d₄ disj₂ theorem nodup_map {f : A → B} (inj : injective f) : ∀ {l : list A}, nodup l → nodup (map f l) | [] n := begin rewrite [map_nil], apply nodup_nil end | (x::xs) n := assert nxinxs : x ∉ xs, from not_mem_of_nodup_cons n, assert ndxs : nodup xs, from nodup_of_nodup_cons n, assert ndmfxs : nodup (map f xs), from nodup_map ndxs, assert nfxinm : f x ∉ map f xs, from λ ab : f x ∈ map f xs, obtain (y : A) (yinxs : y ∈ xs) (fyfx : f y = f x), from exists_of_mem_map ab, assert yeqx : y = x, from inj fyfx, by subst y; contradiction, nodup_cons nfxinm ndmfxs theorem nodup_erase_of_nodup [h : decidable_eq A] (a : A) : ∀ {l}, nodup l → nodup (erase a l) | [] n := nodup_nil | (b::l) n := by_cases (λ aeqb : a = b, by rewrite [aeqb, erase_cons_head]; exact (nodup_of_nodup_cons n)) (λ aneb : a ≠ b, have nbinl : b ∉ l, from not_mem_of_nodup_cons n, have ndl : nodup l, from nodup_of_nodup_cons n, have ndeal : nodup (erase a l), from nodup_erase_of_nodup ndl, have nbineal : b ∉ erase a l, from λ i, absurd (erase_sub _ _ i) nbinl, assert aux : nodup (b :: erase a l), from nodup_cons nbineal ndeal, by rewrite [erase_cons_tail _ aneb]; exact aux) theorem mem_erase_of_nodup [h : decidable_eq A] (a : A) : ∀ {l}, nodup l → a ∉ erase a l | [] n := !not_mem_nil | (b::l) n := have ndl : nodup l, from nodup_of_nodup_cons n, have naineal : a ∉ erase a l, from mem_erase_of_nodup ndl, assert nbinl : b ∉ l, from not_mem_of_nodup_cons n, by_cases (λ aeqb : a = b, by rewrite [aeqb, erase_cons_head]; exact nbinl) (λ aneb : a ≠ b, assert aux : a ∉ b :: erase a l, from assume ainbeal : a ∈ b :: erase a l, or.elim (eq_or_mem_of_mem_cons ainbeal) (λ aeqb : a = b, absurd aeqb aneb) (λ aineal : a ∈ erase a l, absurd aineal naineal), by rewrite [erase_cons_tail _ aneb]; exact aux) definition erase_dup [H : decidable_eq A] : list A → list A | [] := [] | (x :: xs) := if x ∈ xs then erase_dup xs else x :: erase_dup xs theorem erase_dup_nil [H : decidable_eq A] : erase_dup [] = ([] : list A) theorem erase_dup_cons_of_mem [H : decidable_eq A] {a : A} {l : list A} : a ∈ l → erase_dup (a::l) = erase_dup l := assume ainl, calc erase_dup (a::l) = if a ∈ l then erase_dup l else a :: erase_dup l : rfl ... = erase_dup l : if_pos ainl theorem erase_dup_cons_of_not_mem [H : decidable_eq A] {a : A} {l : list A} : a ∉ l → erase_dup (a::l) = a :: erase_dup l := assume nainl, calc erase_dup (a::l) = if a ∈ l then erase_dup l else a :: erase_dup l : rfl ... = a :: erase_dup l : if_neg nainl theorem mem_erase_dup [H : decidable_eq A] {a : A} : ∀ {l}, a ∈ l → a ∈ erase_dup l | [] h := absurd h !not_mem_nil | (b::l) h := by_cases (λ binl : b ∈ l, or.elim (eq_or_mem_of_mem_cons h) (λ aeqb : a = b, by rewrite [erase_dup_cons_of_mem binl, -aeqb at binl]; exact (mem_erase_dup binl)) (λ ainl : a ∈ l, by rewrite [erase_dup_cons_of_mem binl]; exact (mem_erase_dup ainl))) (λ nbinl : b ∉ l, or.elim (eq_or_mem_of_mem_cons h) (λ aeqb : a = b, by rewrite [erase_dup_cons_of_not_mem nbinl, aeqb]; exact !mem_cons) (λ ainl : a ∈ l, by rewrite [erase_dup_cons_of_not_mem nbinl]; exact (or.inr (mem_erase_dup ainl)))) theorem mem_of_mem_erase_dup [H : decidable_eq A] {a : A} : ∀ {l}, a ∈ erase_dup l → a ∈ l | [] h := by rewrite [erase_dup_nil at h]; exact h | (b::l) h := by_cases (λ binl : b ∈ l, have h₁ : a ∈ erase_dup l, by rewrite [erase_dup_cons_of_mem binl at h]; exact h, or.inr (mem_of_mem_erase_dup h₁)) (λ nbinl : b ∉ l, have h₁ : a ∈ b :: erase_dup l, by rewrite [erase_dup_cons_of_not_mem nbinl at h]; exact h, or.elim (eq_or_mem_of_mem_cons h₁) (λ aeqb : a = b, by rewrite aeqb; exact !mem_cons) (λ ainel : a ∈ erase_dup l, or.inr (mem_of_mem_erase_dup ainel))) theorem erase_dup_sub [H : decidable_eq A] (l : list A) : erase_dup l ⊆ l := λ a i, mem_of_mem_erase_dup i theorem sub_erase_dup [H : decidable_eq A] (l : list A) : l ⊆ erase_dup l := λ a i, mem_erase_dup i theorem nodup_erase_dup [H : decidable_eq A] : ∀ l : list A, nodup (erase_dup l) | [] := by rewrite erase_dup_nil; exact nodup_nil | (a::l) := by_cases (λ ainl : a ∈ l, by rewrite [erase_dup_cons_of_mem ainl]; exact (nodup_erase_dup l)) (λ nainl : a ∉ l, assert r : nodup (erase_dup l), from nodup_erase_dup l, assert nin : a ∉ erase_dup l, from assume ab : a ∈ erase_dup l, absurd (mem_of_mem_erase_dup ab) nainl, by rewrite [erase_dup_cons_of_not_mem nainl]; exact (nodup_cons nin r)) theorem erase_dup_eq_of_nodup [H : decidable_eq A] : ∀ {l : list A}, nodup l → erase_dup l = l | [] d := rfl | (a::l) d := assert nainl : a ∉ l, from not_mem_of_nodup_cons d, assert dl : nodup l, from nodup_of_nodup_cons d, by rewrite [erase_dup_cons_of_not_mem nainl, erase_dup_eq_of_nodup dl] definition decidable_nodup [instance] [h : decidable_eq A] : ∀ (l : list A), decidable (nodup l) | [] := inl nodup_nil | (a::l) := match decidable_mem a l with | inl p := inr (not_nodup_cons_of_mem p) | inr n := match decidable_nodup l with | inl nd := inl (nodup_cons n nd) | inr d := inr (not_nodup_cons_of_not_nodup d) end end theorem nodup_product : ∀ {l₁ : list A} {l₂ : list B}, nodup l₁ → nodup l₂ → nodup (product l₁ l₂) | [] l₂ n₁ n₂ := nodup_nil | (a::l₁) l₂ n₁ n₂ := have nainl₁ : a ∉ l₁, from not_mem_of_nodup_cons n₁, have n₃ : nodup l₁, from nodup_of_nodup_cons n₁, have n₄ : nodup (product l₁ l₂), from nodup_product n₃ n₂, have dgen : ∀ l, nodup l → nodup (map (λ b, (a, b)) l) | [] h := nodup_nil | (x::l) h := have dl : nodup l, from nodup_of_nodup_cons h, have dm : nodup (map (λ b, (a, b)) l), from dgen l dl, have nxin : x ∉ l, from not_mem_of_nodup_cons h, have npin : (a, x) ∉ map (λ b, (a, b)) l, from assume pin, absurd (mem_of_mem_map_pair₁ pin) nxin, nodup_cons npin dm, have dm : nodup (map (λ b, (a, b)) l₂), from dgen l₂ n₂, have dsj : disjoint (map (λ b, (a, b)) l₂) (product l₁ l₂), from λ p, match p with | (a₁, b₁) := λ (i₁ : (a₁, b₁) ∈ map (λ b, (a, b)) l₂) (i₂ : (a₁, b₁) ∈ product l₁ l₂), have a₁inl₁ : a₁ ∈ l₁, from mem_of_mem_product_left i₂, have a₁eqa : a₁ = a, from eq_of_mem_map_pair₁ i₁, absurd (a₁eqa ▸ a₁inl₁) nainl₁ end, nodup_append_of_nodup_of_nodup_of_disjoint dm n₄ dsj theorem nodup_filter (p : A → Prop) [h : decidable_pred p] : ∀ {l : list A}, nodup l → nodup (filter p l) | [] nd := nodup_nil | (a::l) nd := have nainl : a ∉ l, from not_mem_of_nodup_cons nd, have ndl : nodup l, from nodup_of_nodup_cons nd, assert ndf : nodup (filter p l), from nodup_filter ndl, assert nainf : a ∉ filter p l, from assume ainf, absurd (mem_of_mem_filter ainf) nainl, by_cases (λ pa : p a, by rewrite [filter_cons_of_pos _ pa]; exact (nodup_cons nainf ndf)) (λ npa : ¬ p a, by rewrite [filter_cons_of_neg _ npa]; exact ndf) lemma dmap_nodup_of_dinj {p : A → Prop} [h : decidable_pred p] {f : Π a, p a → B} (Pdi : dinj p f): ∀ {l : list A}, nodup l → nodup (dmap p f l) | [] := take P, nodup.ndnil | (a::l) := take Pnodup, decidable.rec_on (h a) (λ Pa, begin rewrite [dmap_cons_of_pos Pa], apply nodup_cons, apply (not_mem_dmap_of_dinj_of_not_mem Pdi Pa), exact not_mem_of_nodup_cons Pnodup, exact dmap_nodup_of_dinj (nodup_of_nodup_cons Pnodup) end) (λ nPa, begin rewrite [dmap_cons_of_neg nPa], exact dmap_nodup_of_dinj (nodup_of_nodup_cons Pnodup) end) end nodup /- upto -/ definition upto : nat → list nat | 0 := [] | (n+1) := n :: upto n theorem upto_nil : upto 0 = nil theorem upto_succ (n : nat) : upto (succ n) = n :: upto n theorem length_upto : ∀ n, length (upto n) = n | 0 := rfl | (succ n) := by rewrite [upto_succ, length_cons, length_upto] theorem upto_less : ∀ n, all (upto n) (λ i, i < n) | 0 := trivial | (succ n) := have alln : all (upto n) (λ i, i < n), from upto_less n, all_cons_of_all (lt.base n) (all_implies alln (λ x h, lt.step h)) theorem nodup_upto : ∀ n, nodup (upto n) | 0 := nodup_nil | (n+1) := have d : nodup (upto n), from nodup_upto n, have n : n ∉ upto n, from assume i : n ∈ upto n, absurd (of_mem_of_all i (upto_less n)) (lt.irrefl n), nodup_cons n d theorem lt_of_mem_upto {n i : nat} : i ∈ upto n → i < n := assume i, of_mem_of_all i (upto_less n) theorem mem_upto_succ_of_mem_upto {n i : nat} : i ∈ upto n → i ∈ upto (succ n) := assume i, mem_cons_of_mem _ i theorem mem_upto_of_lt : ∀ {n i : nat}, i < n → i ∈ upto n | 0 i h := absurd h !not_lt_zero | (succ n) i h := begin cases h with m h', { rewrite upto_succ, apply mem_cons}, { exact mem_upto_succ_of_mem_upto (mem_upto_of_lt h')} end lemma upto_step : ∀ {n : nat}, upto (succ n) = (map succ (upto n))++[0] | 0 := rfl | (succ n) := begin rewrite [upto_succ n, map_cons, append_cons, -upto_step] end /- union -/ section union variable {A : Type} variable [H : decidable_eq A] include H definition union : list A → list A → list A | [] l₂ := l₂ | (a::l₁) l₂ := if a ∈ l₂ then union l₁ l₂ else a :: union l₁ l₂ theorem nil_union (l : list A) : union [] l = l theorem union_cons_of_mem {a : A} {l₂} : ∀ (l₁), a ∈ l₂ → union (a::l₁) l₂ = union l₁ l₂ := take l₁, assume ainl₂, calc union (a::l₁) l₂ = if a ∈ l₂ then union l₁ l₂ else a :: union l₁ l₂ : rfl ... = union l₁ l₂ : if_pos ainl₂ theorem union_cons_of_not_mem {a : A} {l₂} : ∀ (l₁), a ∉ l₂ → union (a::l₁) l₂ = a :: union l₁ l₂ := take l₁, assume nainl₂, calc union (a::l₁) l₂ = if a ∈ l₂ then union l₁ l₂ else a :: union l₁ l₂ : rfl ... = a :: union l₁ l₂ : if_neg nainl₂ theorem union_nil : ∀ (l : list A), union l [] = l | [] := !nil_union | (a::l) := by rewrite [union_cons_of_not_mem _ !not_mem_nil, union_nil] theorem mem_or_mem_of_mem_union : ∀ {l₁ l₂} {a : A}, a ∈ union l₁ l₂ → a ∈ l₁ ∨ a ∈ l₂ | [] l₂ a ainl₂ := by rewrite nil_union at ainl₂; exact (or.inr (ainl₂)) | (b::l₁) l₂ a ainbl₁l₂ := by_cases (λ binl₂ : b ∈ l₂, have ainl₁l₂ : a ∈ union l₁ l₂, by rewrite [union_cons_of_mem l₁ binl₂ at ainbl₁l₂]; exact ainbl₁l₂, or.elim (mem_or_mem_of_mem_union ainl₁l₂) (λ ainl₁, or.inl (mem_cons_of_mem _ ainl₁)) (λ ainl₂, or.inr ainl₂)) (λ nbinl₂ : b ∉ l₂, have ainb_l₁l₂ : a ∈ b :: union l₁ l₂, by rewrite [union_cons_of_not_mem l₁ nbinl₂ at ainbl₁l₂]; exact ainbl₁l₂, or.elim (eq_or_mem_of_mem_cons ainb_l₁l₂) (λ aeqb, by rewrite aeqb; exact (or.inl !mem_cons)) (λ ainl₁l₂, or.elim (mem_or_mem_of_mem_union ainl₁l₂) (λ ainl₁, or.inl (mem_cons_of_mem _ ainl₁)) (λ ainl₂, or.inr ainl₂))) theorem mem_union_right {a : A} : ∀ (l₁) {l₂}, a ∈ l₂ → a ∈ union l₁ l₂ | [] l₂ h := by rewrite nil_union; exact h | (b::l₁) l₂ h := by_cases (λ binl₂ : b ∈ l₂, by rewrite [union_cons_of_mem _ binl₂]; exact (mem_union_right _ h)) (λ nbinl₂ : b ∉ l₂, by rewrite [union_cons_of_not_mem _ nbinl₂]; exact (mem_cons_of_mem _ (mem_union_right _ h))) theorem mem_union_left {a : A} : ∀ {l₁} (l₂), a ∈ l₁ → a ∈ union l₁ l₂ | [] l₂ h := absurd h !not_mem_nil | (b::l₁) l₂ h := by_cases (λ binl₂ : b ∈ l₂, or.elim (eq_or_mem_of_mem_cons h) (λ aeqb : a = b, by rewrite [union_cons_of_mem l₁ binl₂, -aeqb at binl₂]; exact (mem_union_right _ binl₂)) (λ ainl₁ : a ∈ l₁, by rewrite [union_cons_of_mem l₁ binl₂]; exact (mem_union_left _ ainl₁))) (λ nbinl₂ : b ∉ l₂, or.elim (eq_or_mem_of_mem_cons h) (λ aeqb : a = b, by rewrite [union_cons_of_not_mem l₁ nbinl₂, aeqb]; exact !mem_cons) (λ ainl₁ : a ∈ l₁, by rewrite [union_cons_of_not_mem l₁ nbinl₂]; exact (mem_cons_of_mem _ (mem_union_left _ ainl₁)))) theorem mem_union_cons (a : A) (l₁ : list A) (l₂ : list A) : a ∈ union (a::l₁) l₂ := by_cases (λ ainl₂ : a ∈ l₂, mem_union_right _ ainl₂) (λ nainl₂ : a ∉ l₂, by rewrite [union_cons_of_not_mem _ nainl₂]; exact !mem_cons) theorem nodup_union_of_nodup_of_nodup : ∀ {l₁ l₂ : list A}, nodup l₁ → nodup l₂ → nodup (union l₁ l₂) | [] l₂ n₁ nl₂ := by rewrite nil_union; exact nl₂ | (a::l₁) l₂ nal₁ nl₂ := assert nl₁ : nodup l₁, from nodup_of_nodup_cons nal₁, assert nl₁l₂ : nodup (union l₁ l₂), from nodup_union_of_nodup_of_nodup nl₁ nl₂, by_cases (λ ainl₂ : a ∈ l₂, by rewrite [union_cons_of_mem l₁ ainl₂]; exact nl₁l₂) (λ nainl₂ : a ∉ l₂, have nainl₁ : a ∉ l₁, from not_mem_of_nodup_cons nal₁, assert nainl₁l₂ : a ∉ union l₁ l₂, from assume ainl₁l₂ : a ∈ union l₁ l₂, or.elim (mem_or_mem_of_mem_union ainl₁l₂) (λ ainl₁, absurd ainl₁ nainl₁) (λ ainl₂, absurd ainl₂ nainl₂), by rewrite [union_cons_of_not_mem l₁ nainl₂]; exact (nodup_cons nainl₁l₂ nl₁l₂)) theorem union_eq_append : ∀ {l₁ l₂ : list A}, disjoint l₁ l₂ → union l₁ l₂ = append l₁ l₂ | [] l₂ d := rfl | (a::l₁) l₂ d := assert nainl₂ : a ∉ l₂, from disjoint_left d !mem_cons, assert d₁ : disjoint l₁ l₂, from disjoint_of_disjoint_cons_left d, by rewrite [union_cons_of_not_mem _ nainl₂, append_cons, union_eq_append d₁] theorem all_union {p : A → Prop} : ∀ {l₁ l₂ : list A}, all l₁ p → all l₂ p → all (union l₁ l₂) p | [] l₂ h₁ h₂ := h₂ | (a::l₁) l₂ h₁ h₂ := have h₁' : all l₁ p, from all_of_all_cons h₁, have pa : p a, from of_all_cons h₁, assert au : all (union l₁ l₂) p, from all_union h₁' h₂, assert au' : all (a :: union l₁ l₂) p, from all_cons_of_all pa au, by_cases (λ ainl₂ : a ∈ l₂, by rewrite [union_cons_of_mem _ ainl₂]; exact au) (λ nainl₂ : a ∉ l₂, by rewrite [union_cons_of_not_mem _ nainl₂]; exact au') theorem all_of_all_union_left {p : A → Prop} : ∀ {l₁ l₂ : list A}, all (union l₁ l₂) p → all l₁ p | [] l₂ h := trivial | (a::l₁) l₂ h := have ain : a ∈ union (a::l₁) l₂, from !mem_union_cons, have pa : p a, from of_mem_of_all ain h, by_cases (λ ainl₂ : a ∈ l₂, have al₁l₂ : all (union l₁ l₂) p, by rewrite [union_cons_of_mem _ ainl₂ at h]; exact h, have al₁ : all l₁ p, from all_of_all_union_left al₁l₂, all_cons_of_all pa al₁) (λ nainl₂ : a ∉ l₂, have aal₁l₂ : all (a::union l₁ l₂) p, by rewrite [union_cons_of_not_mem _ nainl₂ at h]; exact h, have al₁l₂ : all (union l₁ l₂) p, from all_of_all_cons aal₁l₂, have al₁ : all l₁ p, from all_of_all_union_left al₁l₂, all_cons_of_all pa al₁) theorem all_of_all_union_right {p : A → Prop} : ∀ {l₁ l₂ : list A}, all (union l₁ l₂) p → all l₂ p | [] l₂ h := by rewrite [nil_union at h]; exact h | (a::l₁) l₂ h := by_cases (λ ainl₂ : a ∈ l₂, by rewrite [union_cons_of_mem _ ainl₂ at h]; exact (all_of_all_union_right h)) (λ nainl₂ : a ∉ l₂, have h₁ : all (a :: union l₁ l₂) p, by rewrite [union_cons_of_not_mem _ nainl₂ at h]; exact h, all_of_all_union_right (all_of_all_cons h₁)) variable {B : Type} theorem foldl_union_of_disjoint (f : B → A → B) (b : B) {l₁ l₂ : list A} (d : disjoint l₁ l₂) : foldl f b (union l₁ l₂) = foldl f (foldl f b l₁) l₂ := by rewrite [union_eq_append d, foldl_append] theorem foldr_union_of_dijoint (f : A → B → B) (b : B) {l₁ l₂ : list A} (d : disjoint l₁ l₂) : foldr f b (union l₁ l₂) = foldr f (foldr f b l₂) l₁ := by rewrite [union_eq_append d, foldr_append] end union /- insert -/ section insert variable {A : Type} variable [H : decidable_eq A] include H definition insert (a : A) (l : list A) : list A := if a ∈ l then l else a::l theorem insert_eq_of_mem {a : A} {l : list A} : a ∈ l → insert a l = l := assume ainl, if_pos ainl theorem insert_eq_of_not_mem {a : A} {l : list A} : a ∉ l → insert a l = a::l := assume nainl, if_neg nainl theorem mem_insert (a : A) (l : list A) : a ∈ insert a l := by_cases (λ ainl : a ∈ l, by rewrite [insert_eq_of_mem ainl]; exact ainl) (λ nainl : a ∉ l, by rewrite [insert_eq_of_not_mem nainl]; exact !mem_cons) theorem mem_insert_of_mem {a : A} (b : A) {l : list A} : a ∈ l → a ∈ insert b l := assume ainl, by_cases (λ binl : b ∈ l, by rewrite [insert_eq_of_mem binl]; exact ainl) (λ nbinl : b ∉ l, by rewrite [insert_eq_of_not_mem nbinl]; exact (mem_cons_of_mem _ ainl)) theorem eq_or_mem_of_mem_insert {x a : A} {l : list A} (H : x ∈ insert a l) : x = a ∨ x ∈ l := decidable.by_cases (assume H3: a ∈ l, or.inr (insert_eq_of_mem H3 ▸ H)) (assume H3: a ∉ l, have H4: x ∈ a :: l, from insert_eq_of_not_mem H3 ▸ H, iff.mp !mem_cons_iff H4) theorem mem_insert_iff (x a : A) (l : list A) : x ∈ insert a l ↔ x = a ∨ x ∈ l := iff.intro (!eq_or_mem_of_mem_insert) (assume H, or.elim H (assume H' : x = a, H'⁻¹ ▸ !mem_insert) (assume H' : x ∈ l, !mem_insert_of_mem H')) theorem nodup_insert (a : A) {l : list A} : nodup l → nodup (insert a l) := assume n, by_cases (λ ainl : a ∈ l, by rewrite [insert_eq_of_mem ainl]; exact n) (λ nainl : a ∉ l, by rewrite [insert_eq_of_not_mem nainl]; exact (nodup_cons nainl n)) theorem length_insert_of_mem {a : A} {l : list A} : a ∈ l → length (insert a l) = length l := assume ainl, by rewrite [insert_eq_of_mem ainl] theorem length_insert_of_not_mem {a : A} {l : list A} : a ∉ l → length (insert a l) = length l + 1 := assume nainl, by rewrite [insert_eq_of_not_mem nainl] theorem all_insert_of_all {p : A → Prop} {a : A} {l} : p a → all l p → all (insert a l) p := assume h₁ h₂, by_cases (λ ainl : a ∈ l, by rewrite [insert_eq_of_mem ainl]; exact h₂) (λ nainl : a ∉ l, by rewrite [insert_eq_of_not_mem nainl]; exact (all_cons_of_all h₁ h₂)) end insert /- inter -/ section inter variable {A : Type} variable [H : decidable_eq A] include H definition inter : list A → list A → list A | [] l₂ := [] | (a::l₁) l₂ := if a ∈ l₂ then a :: inter l₁ l₂ else inter l₁ l₂ theorem inter_nil (l : list A) : inter [] l = [] theorem inter_cons_of_mem {a : A} (l₁ : list A) {l₂} : a ∈ l₂ → inter (a::l₁) l₂ = a :: inter l₁ l₂ := assume i, if_pos i theorem inter_cons_of_not_mem {a : A} (l₁ : list A) {l₂} : a ∉ l₂ → inter (a::l₁) l₂ = inter l₁ l₂ := assume i, if_neg i theorem mem_of_mem_inter_left : ∀ {l₁ l₂} {a : A}, a ∈ inter l₁ l₂ → a ∈ l₁ | [] l₂ a i := absurd i !not_mem_nil | (b::l₁) l₂ a i := by_cases (λ binl₂ : b ∈ l₂, have aux : a ∈ b :: inter l₁ l₂, by rewrite [inter_cons_of_mem _ binl₂ at i]; exact i, or.elim (eq_or_mem_of_mem_cons aux) (λ aeqb : a = b, by rewrite [aeqb]; exact !mem_cons) (λ aini, mem_cons_of_mem _ (mem_of_mem_inter_left aini))) (λ nbinl₂ : b ∉ l₂, have ainl₁ : a ∈ l₁, by rewrite [inter_cons_of_not_mem _ nbinl₂ at i]; exact (mem_of_mem_inter_left i), mem_cons_of_mem _ ainl₁) theorem mem_of_mem_inter_right : ∀ {l₁ l₂} {a : A}, a ∈ inter l₁ l₂ → a ∈ l₂ | [] l₂ a i := absurd i !not_mem_nil | (b::l₁) l₂ a i := by_cases (λ binl₂ : b ∈ l₂, have aux : a ∈ b :: inter l₁ l₂, by rewrite [inter_cons_of_mem _ binl₂ at i]; exact i, or.elim (eq_or_mem_of_mem_cons aux) (λ aeqb : a = b, by rewrite [aeqb]; exact binl₂) (λ aini : a ∈ inter l₁ l₂, mem_of_mem_inter_right aini)) (λ nbinl₂ : b ∉ l₂, by rewrite [inter_cons_of_not_mem _ nbinl₂ at i]; exact (mem_of_mem_inter_right i)) theorem mem_inter_of_mem_of_mem : ∀ {l₁ l₂} {a : A}, a ∈ l₁ → a ∈ l₂ → a ∈ inter l₁ l₂ | [] l₂ a i₁ i₂ := absurd i₁ !not_mem_nil | (b::l₁) l₂ a i₁ i₂ := by_cases (λ binl₂ : b ∈ l₂, or.elim (eq_or_mem_of_mem_cons i₁) (λ aeqb : a = b, by rewrite [inter_cons_of_mem _ binl₂, aeqb]; exact !mem_cons) (λ ainl₁ : a ∈ l₁, by rewrite [inter_cons_of_mem _ binl₂]; apply mem_cons_of_mem; exact (mem_inter_of_mem_of_mem ainl₁ i₂))) (λ nbinl₂ : b ∉ l₂, or.elim (eq_or_mem_of_mem_cons i₁) (λ aeqb : a = b, absurd (aeqb ▸ i₂) nbinl₂) (λ ainl₁ : a ∈ l₁, by rewrite [inter_cons_of_not_mem _ nbinl₂]; exact (mem_inter_of_mem_of_mem ainl₁ i₂))) theorem nodup_inter_of_nodup : ∀ {l₁ : list A} (l₂), nodup l₁ → nodup (inter l₁ l₂) | [] l₂ d := nodup_nil | (a::l₁) l₂ d := have d₁ : nodup l₁, from nodup_of_nodup_cons d, assert d₂ : nodup (inter l₁ l₂), from nodup_inter_of_nodup _ d₁, have nainl₁ : a ∉ l₁, from not_mem_of_nodup_cons d, assert naini : a ∉ inter l₁ l₂, from λ i, absurd (mem_of_mem_inter_left i) nainl₁, by_cases (λ ainl₂ : a ∈ l₂, by rewrite [inter_cons_of_mem _ ainl₂]; exact (nodup_cons naini d₂)) (λ nainl₂ : a ∉ l₂, by rewrite [inter_cons_of_not_mem _ nainl₂]; exact d₂) theorem inter_eq_nil_of_disjoint : ∀ {l₁ l₂ : list A}, disjoint l₁ l₂ → inter l₁ l₂ = [] | [] l₂ d := rfl | (a::l₁) l₂ d := assert aux_eq : inter l₁ l₂ = [], from inter_eq_nil_of_disjoint (disjoint_of_disjoint_cons_left d), assert nainl₂ : a ∉ l₂, from disjoint_left d !mem_cons, by rewrite [inter_cons_of_not_mem _ nainl₂, aux_eq] theorem all_inter_of_all_left {p : A → Prop} : ∀ {l₁} (l₂), all l₁ p → all (inter l₁ l₂) p | [] l₂ h := trivial | (a::l₁) l₂ h := have h₁ : all l₁ p, from all_of_all_cons h, assert h₂ : all (inter l₁ l₂) p, from all_inter_of_all_left _ h₁, have pa : p a, from of_all_cons h, assert h₃ : all (a :: inter l₁ l₂) p, from all_cons_of_all pa h₂, by_cases (λ ainl₂ : a ∈ l₂, by rewrite [inter_cons_of_mem _ ainl₂]; exact h₃) (λ nainl₂ : a ∉ l₂, by rewrite [inter_cons_of_not_mem _ nainl₂]; exact h₂) theorem all_inter_of_all_right {p : A → Prop} : ∀ (l₁) {l₂}, all l₂ p → all (inter l₁ l₂) p | [] l₂ h := trivial | (a::l₁) l₂ h := assert h₁ : all (inter l₁ l₂) p, from all_inter_of_all_right _ h, by_cases (λ ainl₂ : a ∈ l₂, have pa : p a, from of_mem_of_all ainl₂ h, assert h₂ : all (a :: inter l₁ l₂) p, from all_cons_of_all pa h₁, by rewrite [inter_cons_of_mem _ ainl₂]; exact h₂) (λ nainl₂ : a ∉ l₂, by rewrite [inter_cons_of_not_mem _ nainl₂]; exact h₁) end inter end list