import macros -- loads the λ, λ, obtain macros using Nat -- using the Nat namespace (it allows us to suppress the Nat:: prefix) axiom Induction : ∀ P : Nat → Bool, P 0 → (∀ n, P n → P (n + 1)) → ∀ n, P n. -- induction on n theorem Comm1 : ∀ n m, n + m = m + n := Induction _ -- I use a placeholder because I do not want to write the P (λ m, -- Base case calc 0 + m = m : add::zerol m ... = m + 0 : symm (add::zeror m)) (λ n, -- Inductive case λ (iH : ∀ m, n + m = m + n), λ m, calc n + 1 + m = (n + m) + 1 : add::succl n m ... = (m + n) + 1 : { iH m } ... = m + (n + 1) : symm (add::succr m n)) -- indunction on m theorem Comm2 : ∀ n m, n + m = m + n := λ n, Induction _ (calc n + 0 = n : add::zeror n ... = 0 + n : symm (add::zerol n)) (λ m, λ (iH : n + m = m + n), calc n + (m + 1) = (n + m) + 1 : add::succr n m ... = (m + n) + 1 : { iH } ... = (m + 1) + n : symm (add::succl m n)) print environment 1