/- Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura, Jeremy Avigad Finite sets. -/ import data.fintype.basic data.nat data.list.perm data.subtype algebra.binary open nat quot list subtype binary function eq.ops open [declarations] perm definition nodup_list (A : Type) := {l : list A | nodup l} variable {A : Type} definition to_nodup_list_of_nodup {l : list A} (n : nodup l) : nodup_list A := tag l n definition to_nodup_list [h : decidable_eq A] (l : list A) : nodup_list A := @to_nodup_list_of_nodup A (erase_dup l) (nodup_erase_dup l) private definition eqv (l₁ l₂ : nodup_list A) := perm (elt_of l₁) (elt_of l₂) local infix ~ := eqv private definition eqv.refl (l : nodup_list A) : l ~ l := !perm.refl private definition eqv.symm {l₁ l₂ : nodup_list A} : l₁ ~ l₂ → l₂ ~ l₁ := perm.symm private definition eqv.trans {l₁ l₂ l₃ : nodup_list A} : l₁ ~ l₂ → l₂ ~ l₃ → l₁ ~ l₃ := perm.trans definition finset.nodup_list_setoid [instance] (A : Type) : setoid (nodup_list A) := setoid.mk (@eqv A) (mk_equivalence (@eqv A) (@eqv.refl A) (@eqv.symm A) (@eqv.trans A)) definition finset (A : Type) : Type := quot (finset.nodup_list_setoid A) namespace finset definition to_finset_of_nodup (l : list A) (n : nodup l) : finset A := ⟦to_nodup_list_of_nodup n⟧ definition to_finset [h : decidable_eq A] (l : list A) : finset A := ⟦to_nodup_list l⟧ lemma to_finset_eq_of_nodup [h : decidable_eq A] {l : list A} (n : nodup l) : to_finset_of_nodup l n = to_finset l := assert P : to_nodup_list_of_nodup n = to_nodup_list l, from begin rewrite [↑to_nodup_list, ↑to_nodup_list_of_nodup], congruence, rewrite [erase_dup_eq_of_nodup n] end, quot.sound (eq.subst P !setoid.refl) definition has_decidable_eq [instance] [h : decidable_eq A] : decidable_eq (finset A) := λ s₁ s₂, quot.rec_on_subsingleton₂ s₁ s₂ (λ l₁ l₂, match decidable_perm (elt_of l₁) (elt_of l₂) with | decidable.inl e := decidable.inl (quot.sound e) | decidable.inr n := decidable.inr (λ e : ⟦l₁⟧ = ⟦l₂⟧, absurd (quot.exact e) n) end) definition mem (a : A) (s : finset A) : Prop := quot.lift_on s (λ l, a ∈ elt_of l) (λ l₁ l₂ (e : l₁ ~ l₂), propext (iff.intro (λ ainl₁, mem_perm e ainl₁) (λ ainl₂, mem_perm (perm.symm e) ainl₂))) infix `∈` := mem notation a ∉ b := ¬ mem a b theorem mem_of_mem_list {a : A} {l : nodup_list A} : a ∈ elt_of l → a ∈ ⟦l⟧ := λ ainl, ainl theorem mem_list_of_mem {a : A} {l : nodup_list A} : a ∈ ⟦l⟧ → a ∈ elt_of l := λ ainl, ainl /- singleton -/ definition singleton (a : A) : finset A := to_finset_of_nodup [a] !nodup_singleton theorem mem_singleton [simp] (a : A) : a ∈ singleton a := mem_of_mem_list !mem_cons theorem eq_of_mem_singleton {x a : A} : x ∈ singleton a → x = a := list.mem_singleton theorem mem_singleton_eq (x a : A) : (x ∈ singleton a) = (x = a) := propext (iff.intro eq_of_mem_singleton (assume H, eq.subst H !mem_singleton)) lemma eq_of_singleton_eq {a b : A} : singleton a = singleton b → a = b := assume Pseq, eq_of_mem_singleton (Pseq ▸ mem_singleton a) definition decidable_mem [instance] [h : decidable_eq A] : ∀ (a : A) (s : finset A), decidable (a ∈ s) := λ a s, quot.rec_on_subsingleton s (λ l, match list.decidable_mem a (elt_of l) with | decidable.inl p := decidable.inl (mem_of_mem_list p) | decidable.inr n := decidable.inr (λ p, absurd (mem_list_of_mem p) n) end) theorem mem_to_finset [h : decidable_eq A] {a : A} {l : list A} : a ∈ l → a ∈ to_finset l := λ ainl, mem_erase_dup ainl theorem mem_to_finset_of_nodup {a : A} {l : list A} (n : nodup l) : a ∈ l → a ∈ to_finset_of_nodup l n := λ ainl, ainl /- extensionality -/ theorem ext {s₁ s₂ : finset A} : (∀ a, a ∈ s₁ ↔ a ∈ s₂) → s₁ = s₂ := quot.induction_on₂ s₁ s₂ (λ l₁ l₂ e, quot.sound (perm_ext (has_property l₁) (has_property l₂) e)) /- empty -/ definition empty : finset A := to_finset_of_nodup [] nodup_nil notation `∅` := !empty theorem not_mem_empty [simp] (a : A) : a ∉ ∅ := λ aine : a ∈ ∅, aine theorem mem_empty_iff [simp] (x : A) : x ∈ ∅ ↔ false := iff_false_intro !not_mem_empty theorem mem_empty_eq (x : A) : x ∈ ∅ = false := propext !mem_empty_iff theorem eq_empty_of_forall_not_mem {s : finset A} (H : ∀x, ¬ x ∈ s) : s = ∅ := ext (take x, iff_false_intro (H x)) /- universe -/ definition univ [h : fintype A] : finset A := to_finset_of_nodup (@fintype.elems A h) (@fintype.unique A h) theorem mem_univ [h : fintype A] (x : A) : x ∈ univ := fintype.complete x theorem mem_univ_eq [h : fintype A] (x : A) : x ∈ univ = true := propext (iff_true_intro !mem_univ) /- card -/ definition card (s : finset A) : nat := quot.lift_on s (λ l, length (elt_of l)) (λ l₁ l₂ p, length_eq_length_of_perm p) theorem card_empty : card (@empty A) = 0 := rfl theorem card_singleton (a : A) : card (singleton a) = 1 := rfl /- insert -/ section insert variable [h : decidable_eq A] include h definition insert (a : A) (s : finset A) : finset A := quot.lift_on s (λ l, to_finset_of_nodup (insert a (elt_of l)) (nodup_insert a (has_property l))) (λ (l₁ l₂ : nodup_list A) (p : l₁ ~ l₂), quot.sound (perm_insert a p)) -- set builder notation notation `'{`:max a:(foldr `,` (x b, insert x b) ∅) `}`:0 := a -- notation `⦃` a:(foldr `,` (x b, insert x b) ∅) `⦄` := a theorem mem_insert (a : A) (s : finset A) : a ∈ insert a s := quot.induction_on s (λ l : nodup_list A, mem_to_finset_of_nodup _ !list.mem_insert) theorem mem_insert_of_mem {a : A} {s : finset A} (b : A) : a ∈ s → a ∈ insert b s := quot.induction_on s (λ (l : nodup_list A) (ainl : a ∈ ⟦l⟧), mem_to_finset_of_nodup _ (list.mem_insert_of_mem _ ainl)) theorem eq_or_mem_of_mem_insert {x a : A} {s : finset A} : x ∈ insert a s → x = a ∨ x ∈ s := quot.induction_on s (λ l : nodup_list A, λ H, list.eq_or_mem_of_mem_insert H) theorem mem_of_mem_insert_of_ne {x a : A} {s : finset A} (xin : x ∈ insert a s) : x ≠ a → x ∈ s := or_resolve_right (eq_or_mem_of_mem_insert xin) theorem mem_insert_eq (x a : A) (s : finset A) : x ∈ insert a s = (x = a ∨ x ∈ s) := propext (iff.intro !eq_or_mem_of_mem_insert (or.rec (λH', (eq.substr H' !mem_insert)) !mem_insert_of_mem)) theorem insert_empty_eq (a : A) : '{a} = singleton a := rfl theorem insert_eq_of_mem {a : A} {s : finset A} (H : a ∈ s) : insert a s = s := ext (λ x, eq.substr (mem_insert_eq x a s) (or_iff_right_of_imp (λH1, eq.substr H1 H))) theorem card_insert_of_mem {a : A} {s : finset A} : a ∈ s → card (insert a s) = card s := quot.induction_on s (λ (l : nodup_list A) (ainl : a ∈ ⟦l⟧), list.length_insert_of_mem ainl) theorem card_insert_of_not_mem {a : A} {s : finset A} : a ∉ s → card (insert a s) = card s + 1 := quot.induction_on s (λ (l : nodup_list A) (nainl : a ∉ ⟦l⟧), list.length_insert_of_not_mem nainl) theorem card_insert_le (a : A) (s : finset A) : card (insert a s) ≤ card s + 1 := if H : a ∈ s then by rewrite [card_insert_of_mem H]; apply le_succ else by rewrite [card_insert_of_not_mem H] lemma ne_empty_of_card_eq_succ {s : finset A} {n : nat} : card s = succ n → s ≠ ∅ := by intros; substvars; contradiction protected theorem induction [recursor 6] {P : finset A → Prop} (H1 : P empty) (H2 : ∀ ⦃a : A⦄, ∀{s : finset A}, a ∉ s → P s → P (insert a s)) : ∀s, P s := take s, quot.induction_on s (take u, subtype.destruct u (take l, list.induction_on l (assume nodup_l, H1) (take a l', assume IH nodup_al', have a ∉ l', from not_mem_of_nodup_cons nodup_al', assert e : list.insert a l' = a :: l', from insert_eq_of_not_mem this, assert nodup l', from nodup_of_nodup_cons nodup_al', assert P (quot.mk (subtype.tag l' this)), from IH this, assert P (insert a (quot.mk (subtype.tag l' _))), from H2 `a ∉ l'` this, begin revert nodup_al', rewrite [-e], intros, apply this end))) protected theorem induction_on {P : finset A → Prop} (s : finset A) (H1 : P empty) (H2 : ∀ ⦃a : A⦄, ∀ {s : finset A}, a ∉ s → P s → P (insert a s)) : P s := finset.induction H1 H2 s theorem exists_of_not_empty {s : finset A} : s ≠ ∅ → ∃ a : A, a ∈ s := begin induction s with a s nin ih, {intro h, exact absurd rfl h}, {intro h, existsi a, apply mem_insert} end theorem eq_empty_of_card_eq_zero {s : finset A} (H : card s = 0) : s = ∅ := begin induction s with a s' H1 IH, { reflexivity }, { rewrite (card_insert_of_not_mem H1) at H, apply nat.no_confusion H} end end insert /- erase -/ section erase variable [h : decidable_eq A] include h definition erase (a : A) (s : finset A) : finset A := quot.lift_on s (λ l, to_finset_of_nodup (erase a (elt_of l)) (nodup_erase_of_nodup a (has_property l))) (λ (l₁ l₂ : nodup_list A) (p : l₁ ~ l₂), quot.sound (erase_perm_erase_of_perm a p)) theorem mem_erase (a : A) (s : finset A) : a ∉ erase a s := quot.induction_on s (λ l, list.mem_erase_of_nodup _ (has_property l)) theorem card_erase_of_mem {a : A} {s : finset A} : a ∈ s → card (erase a s) = pred (card s) := quot.induction_on s (λ l ainl, list.length_erase_of_mem ainl) theorem card_erase_of_not_mem {a : A} {s : finset A} : a ∉ s → card (erase a s) = card s := quot.induction_on s (λ l nainl, list.length_erase_of_not_mem nainl) theorem erase_empty (a : A) : erase a ∅ = ∅ := rfl theorem ne_of_mem_erase {a b : A} {s : finset A} : b ∈ erase a s → b ≠ a := by intro h beqa; subst b; exact absurd h !mem_erase theorem mem_of_mem_erase {a b : A} {s : finset A} : b ∈ erase a s → b ∈ s := quot.induction_on s (λ l bin, mem_of_mem_erase bin) theorem mem_erase_of_ne_of_mem {a b : A} {s : finset A} : a ≠ b → a ∈ s → a ∈ erase b s := quot.induction_on s (λ l n ain, list.mem_erase_of_ne_of_mem n ain) open decidable theorem erase_insert (a : A) (s : finset A) : a ∉ s → erase a (insert a s) = s := λ anins, finset.ext (λ b, by_cases (λ beqa : b = a, iff.intro (λ bin, by subst b; exact absurd bin !mem_erase) (λ bin, by subst b; contradiction)) (λ bnea : b ≠ a, iff.intro (λ bin, assert b ∈ insert a s, from mem_of_mem_erase bin, mem_of_mem_insert_of_ne this bnea) (λ bin, have b ∈ insert a s, from mem_insert_of_mem _ bin, mem_erase_of_ne_of_mem bnea this))) theorem insert_erase {a : A} {s : finset A} : a ∈ s → insert a (erase a s) = s := λ ains, finset.ext (λ b, by_cases (suppose b = a, iff.intro (λ bin, by subst b; assumption) (λ bin, by subst b; apply mem_insert)) (suppose b ≠ a, iff.intro (λ bin, mem_of_mem_erase (mem_of_mem_insert_of_ne bin `b ≠ a`)) (λ bin, mem_insert_of_mem _ (mem_erase_of_ne_of_mem `b ≠ a` bin)))) end erase /- union -/ section union variable [h : decidable_eq A] include h definition union (s₁ s₂ : finset A) : finset A := quot.lift_on₂ s₁ s₂ (λ l₁ l₂, to_finset_of_nodup (list.union (elt_of l₁) (elt_of l₂)) (nodup_union_of_nodup_of_nodup (has_property l₁) (has_property l₂))) (λ v₁ v₂ w₁ w₂ p₁ p₂, quot.sound (perm_union p₁ p₂)) notation s₁ ∪ s₂ := union s₁ s₂ theorem mem_union_left {a : A} {s₁ : finset A} (s₂ : finset A) : a ∈ s₁ → a ∈ s₁ ∪ s₂ := quot.induction_on₂ s₁ s₂ (λ l₁ l₂ ainl₁, list.mem_union_left _ ainl₁) theorem mem_union_l {a : A} {s₁ : finset A} {s₂ : finset A} : a ∈ s₁ → a ∈ s₁ ∪ s₂ := mem_union_left s₂ theorem mem_union_right {a : A} {s₂ : finset A} (s₁ : finset A) : a ∈ s₂ → a ∈ s₁ ∪ s₂ := quot.induction_on₂ s₁ s₂ (λ l₁ l₂ ainl₂, list.mem_union_right _ ainl₂) theorem mem_union_r {a : A} {s₂ : finset A} {s₁ : finset A} : a ∈ s₂ → a ∈ s₁ ∪ s₂ := mem_union_right s₁ theorem mem_or_mem_of_mem_union {a : A} {s₁ s₂ : finset A} : a ∈ s₁ ∪ s₂ → a ∈ s₁ ∨ a ∈ s₂ := quot.induction_on₂ s₁ s₂ (λ l₁ l₂ ainl₁l₂, list.mem_or_mem_of_mem_union ainl₁l₂) theorem mem_union_iff (a : A) (s₁ s₂ : finset A) : a ∈ s₁ ∪ s₂ ↔ a ∈ s₁ ∨ a ∈ s₂ := iff.intro (λ h, mem_or_mem_of_mem_union h) (λ d, or.elim d (λ i, mem_union_left _ i) (λ i, mem_union_right _ i)) theorem mem_union_eq (a : A) (s₁ s₂ : finset A) : (a ∈ s₁ ∪ s₂) = (a ∈ s₁ ∨ a ∈ s₂) := propext !mem_union_iff theorem union.comm (s₁ s₂ : finset A) : s₁ ∪ s₂ = s₂ ∪ s₁ := ext (λ a, by rewrite [*mem_union_eq]; exact or.comm) theorem union.assoc (s₁ s₂ s₃ : finset A) : (s₁ ∪ s₂) ∪ s₃ = s₁ ∪ (s₂ ∪ s₃) := ext (λ a, by rewrite [*mem_union_eq]; exact or.assoc) theorem union_self (s : finset A) : s ∪ s = s := ext (λ a, iff.intro (λ ain, or.elim (mem_or_mem_of_mem_union ain) (λ i, i) (λ i, i)) (λ i, mem_union_left _ i)) theorem union_empty (s : finset A) : s ∪ ∅ = s := ext (λ a, iff.intro (suppose a ∈ s ∪ ∅, or.elim (mem_or_mem_of_mem_union this) (λ i, i) (λ i, absurd i !not_mem_empty)) (suppose a ∈ s, mem_union_left _ this)) theorem empty_union (s : finset A) : ∅ ∪ s = s := calc ∅ ∪ s = s ∪ ∅ : union.comm ... = s : union_empty theorem insert_eq (a : A) (s : finset A) : insert a s = singleton a ∪ s := ext (take x, calc x ∈ insert a s ↔ x ∈ insert a s : iff.refl ... = (x = a ∨ x ∈ s) : mem_insert_eq ... = (x ∈ singleton a ∨ x ∈ s) : mem_singleton_eq ... = (x ∈ '{a} ∪ s) : mem_union_eq) theorem insert_union (a : A) (s t : finset A) : insert a (s ∪ t) = insert a s ∪ t := by rewrite [*insert_eq, union.assoc] end union /- inter -/ section inter variable [h : decidable_eq A] include h definition inter (s₁ s₂ : finset A) : finset A := quot.lift_on₂ s₁ s₂ (λ l₁ l₂, to_finset_of_nodup (list.inter (elt_of l₁) (elt_of l₂)) (nodup_inter_of_nodup _ (has_property l₁))) (λ v₁ v₂ w₁ w₂ p₁ p₂, quot.sound (perm_inter p₁ p₂)) notation s₁ ∩ s₂ := inter s₁ s₂ theorem mem_of_mem_inter_left {a : A} {s₁ s₂ : finset A} : a ∈ s₁ ∩ s₂ → a ∈ s₁ := quot.induction_on₂ s₁ s₂ (λ l₁ l₂ ainl₁l₂, list.mem_of_mem_inter_left ainl₁l₂) theorem mem_of_mem_inter_right {a : A} {s₁ s₂ : finset A} : a ∈ s₁ ∩ s₂ → a ∈ s₂ := quot.induction_on₂ s₁ s₂ (λ l₁ l₂ ainl₁l₂, list.mem_of_mem_inter_right ainl₁l₂) theorem mem_inter {a : A} {s₁ s₂ : finset A} : a ∈ s₁ → a ∈ s₂ → a ∈ s₁ ∩ s₂ := quot.induction_on₂ s₁ s₂ (λ l₁ l₂ ainl₁ ainl₂, list.mem_inter_of_mem_of_mem ainl₁ ainl₂) theorem mem_inter_iff (a : A) (s₁ s₂ : finset A) : a ∈ s₁ ∩ s₂ ↔ a ∈ s₁ ∧ a ∈ s₂ := iff.intro (λ h, and.intro (mem_of_mem_inter_left h) (mem_of_mem_inter_right h)) (λ h, mem_inter (and.elim_left h) (and.elim_right h)) theorem mem_inter_eq (a : A) (s₁ s₂ : finset A) : (a ∈ s₁ ∩ s₂) = (a ∈ s₁ ∧ a ∈ s₂) := propext !mem_inter_iff theorem inter.comm (s₁ s₂ : finset A) : s₁ ∩ s₂ = s₂ ∩ s₁ := ext (λ a, by rewrite [*mem_inter_eq]; exact and.comm) theorem inter.assoc (s₁ s₂ s₃ : finset A) : (s₁ ∩ s₂) ∩ s₃ = s₁ ∩ (s₂ ∩ s₃) := ext (λ a, by rewrite [*mem_inter_eq]; exact and.assoc) theorem inter_self (s : finset A) : s ∩ s = s := ext (λ a, iff.intro (λ h, mem_of_mem_inter_right h) (λ h, mem_inter h h)) theorem inter_empty (s : finset A) : s ∩ ∅ = ∅ := ext (λ a, iff.intro (suppose a ∈ s ∩ ∅, absurd (mem_of_mem_inter_right this) !not_mem_empty) (suppose a ∈ ∅, absurd this !not_mem_empty)) theorem empty_inter (s : finset A) : ∅ ∩ s = ∅ := calc ∅ ∩ s = s ∩ ∅ : inter.comm ... = ∅ : inter_empty theorem singleton_inter_of_mem {a : A} {s : finset A} (H : a ∈ s) : singleton a ∩ s = singleton a := ext (take x, begin rewrite [mem_inter_eq, !mem_singleton_eq], exact iff.intro (suppose x = a ∧ x ∈ s, and.left this) (suppose x = a, and.intro this (eq.subst (eq.symm this) H)) end) theorem singleton_inter_of_not_mem {a : A} {s : finset A} (H : a ∉ s) : singleton a ∩ s = ∅ := ext (take x, begin rewrite [mem_inter_eq, !mem_singleton_eq, mem_empty_eq], exact iff.intro (suppose x = a ∧ x ∈ s, H (eq.subst (and.left this) (and.right this))) (false.elim) end) end inter /- distributivity laws -/ section inter variable [h : decidable_eq A] include h theorem inter.distrib_left (s t u : finset A) : s ∩ (t ∪ u) = (s ∩ t) ∪ (s ∩ u) := ext (take x, by rewrite [mem_inter_eq, *mem_union_eq, *mem_inter_eq]; apply and.distrib_left) theorem inter.distrib_right (s t u : finset A) : (s ∪ t) ∩ u = (s ∩ u) ∪ (t ∩ u) := ext (take x, by rewrite [mem_inter_eq, *mem_union_eq, *mem_inter_eq]; apply and.distrib_right) theorem union.distrib_left (s t u : finset A) : s ∪ (t ∩ u) = (s ∪ t) ∩ (s ∪ u) := ext (take x, by rewrite [mem_union_eq, *mem_inter_eq, *mem_union_eq]; apply or.distrib_left) theorem union.distrib_right (s t u : finset A) : (s ∩ t) ∪ u = (s ∪ u) ∩ (t ∪ u) := ext (take x, by rewrite [mem_union_eq, *mem_inter_eq, *mem_union_eq]; apply or.distrib_right) end inter /- disjoint -/ -- Mainly for internal use; library will use s₁ ∩ s₂ = ∅. Note that it does not require decidable equality. definition disjoint (s₁ s₂ : finset A) : Prop := quot.lift_on₂ s₁ s₂ (λ l₁ l₂, disjoint (elt_of l₁) (elt_of l₂)) (λ v₁ v₂ w₁ w₂ p₁ p₂, propext (iff.intro (λ d₁ a (ainw₁ : a ∈ elt_of w₁), have a ∈ elt_of v₁, from mem_perm (perm.symm p₁) ainw₁, have a ∉ elt_of v₂, from disjoint_left d₁ this, not_mem_perm p₂ this) (λ d₂ a (ainv₁ : a ∈ elt_of v₁), have a ∈ elt_of w₁, from mem_perm p₁ ainv₁, have a ∉ elt_of w₂, from disjoint_left d₂ this, not_mem_perm (perm.symm p₂) this))) theorem disjoint.elim {s₁ s₂ : finset A} {x : A} : disjoint s₁ s₂ → x ∈ s₁ → x ∈ s₂ → false := quot.induction_on₂ s₁ s₂ (take u₁ u₂, assume H H1 H2, H x H1 H2) theorem disjoint.intro {s₁ s₂ : finset A} : (∀{x : A}, x ∈ s₁ → x ∈ s₂ → false) → disjoint s₁ s₂ := quot.induction_on₂ s₁ s₂ (take u₁ u₂, assume H, H) theorem inter_eq_empty_of_disjoint [h : decidable_eq A] {s₁ s₂ : finset A} (H : disjoint s₁ s₂) : s₁ ∩ s₂ = ∅ := ext (take x, iff_false_intro (assume H1, disjoint.elim H (mem_of_mem_inter_left H1) (mem_of_mem_inter_right H1))) theorem disjoint_of_inter_eq_empty [h : decidable_eq A] {s₁ s₂ : finset A} (H : s₁ ∩ s₂ = ∅) : disjoint s₁ s₂ := disjoint.intro (take x H1 H2, have x ∈ s₁ ∩ s₂, from mem_inter H1 H2, !not_mem_empty (eq.subst H this)) theorem disjoint.comm {s₁ s₂ : finset A} : disjoint s₁ s₂ → disjoint s₂ s₁ := quot.induction_on₂ s₁ s₂ (λ l₁ l₂ d, list.disjoint.comm d) theorem inter_eq_empty [h : decidable_eq A] {s₁ s₂ : finset A} (H : ∀x : A, x ∈ s₁ → x ∈ s₂ → false) : s₁ ∩ s₂ = ∅ := inter_eq_empty_of_disjoint (disjoint.intro H) /- subset -/ definition subset (s₁ s₂ : finset A) : Prop := quot.lift_on₂ s₁ s₂ (λ l₁ l₂, sublist (elt_of l₁) (elt_of l₂)) (λ v₁ v₂ w₁ w₂ p₁ p₂, propext (iff.intro (λ s₁ a i, mem_perm p₂ (s₁ a (mem_perm (perm.symm p₁) i))) (λ s₂ a i, mem_perm (perm.symm p₂) (s₂ a (mem_perm p₁ i))))) infix `⊆` := subset theorem empty_subset (s : finset A) : ∅ ⊆ s := quot.induction_on s (λ l, list.nil_sub (elt_of l)) theorem subset_univ [h : fintype A] (s : finset A) : s ⊆ univ := quot.induction_on s (λ l a i, fintype.complete a) theorem subset.refl (s : finset A) : s ⊆ s := quot.induction_on s (λ l, list.sub.refl (elt_of l)) theorem subset.trans {s₁ s₂ s₃ : finset A} : s₁ ⊆ s₂ → s₂ ⊆ s₃ → s₁ ⊆ s₃ := quot.induction_on₃ s₁ s₂ s₃ (λ l₁ l₂ l₃ h₁ h₂, list.sub.trans h₁ h₂) theorem mem_of_subset_of_mem {s₁ s₂ : finset A} {a : A} : s₁ ⊆ s₂ → a ∈ s₁ → a ∈ s₂ := quot.induction_on₂ s₁ s₂ (λ l₁ l₂ h₁ h₂, h₁ a h₂) theorem subset_of_forall {s₁ s₂ : finset A} : (∀x, x ∈ s₁ → x ∈ s₂) → s₁ ⊆ s₂ := quot.induction_on₂ s₁ s₂ (λ l₁ l₂ H, H) theorem subset_insert [h : decidable_eq A] (s : finset A) (a : A) : s ⊆ insert a s := subset_of_forall (take x, suppose x ∈ s, mem_insert_of_mem _ this) theorem eq_of_subset_of_subset {s₁ s₂ : finset A} (H₁ : s₁ ⊆ s₂) (H₂ : s₂ ⊆ s₁) : s₁ = s₂ := ext (take x, iff.intro (assume H, mem_of_subset_of_mem H₁ H) (assume H, mem_of_subset_of_mem H₂ H)) section variable [decA : decidable_eq A] include decA theorem erase_subset_erase_of_subset {a : A} {s₁ s₂ : finset A} : s₁ ⊆ s₂ → erase a s₁ ⊆ erase a s₂ := λ is_sub, subset_of_forall (λ b bin, mem_erase_of_ne_of_mem (ne_of_mem_erase bin) (mem_of_subset_of_mem is_sub (mem_of_mem_erase bin))) end /- upto -/ section upto definition upto (n : nat) : finset nat := to_finset_of_nodup (list.upto n) (nodup_upto n) theorem card_upto : ∀ n, card (upto n) = n := list.length_upto theorem lt_of_mem_upto {n a : nat} : a ∈ upto n → a < n := list.lt_of_mem_upto theorem mem_upto_succ_of_mem_upto {n a : nat} : a ∈ upto n → a ∈ upto (succ n) := list.mem_upto_succ_of_mem_upto theorem mem_upto_of_lt {n a : nat} : a < n → a ∈ upto n := list.mem_upto_of_lt theorem mem_upto_iff (a n : nat) : a ∈ upto n ↔ a < n := iff.intro lt_of_mem_upto mem_upto_of_lt theorem mem_upto_eq (a n : nat) : a ∈ upto n = (a < n) := propext !mem_upto_iff end upto /- useful rules for calculations with quantifiers -/ theorem exists_mem_empty_iff {A : Type} (P : A → Prop) : (∃ x, x ∈ ∅ ∧ P x) ↔ false := iff.intro (assume H, obtain x (H1 : x ∈ ∅ ∧ P x), from H, !not_mem_empty (and.left H1)) (assume H, false.elim H) theorem exists_mem_empty_eq {A : Type} (P : A → Prop) : (∃ x, x ∈ ∅ ∧ P x) = false := propext !exists_mem_empty_iff theorem exists_mem_insert_iff {A : Type} [d : decidable_eq A] (a : A) (s : finset A) (P : A → Prop) : (∃ x, x ∈ insert a s ∧ P x) ↔ P a ∨ (∃ x, x ∈ s ∧ P x) := iff.intro (assume H, obtain x [H1 H2], from H, or.elim (eq_or_mem_of_mem_insert H1) (suppose x = a, or.inl (eq.subst this H2)) (suppose x ∈ s, or.inr (exists.intro x (and.intro this H2)))) (assume H, or.elim H (suppose P a, exists.intro a (and.intro !mem_insert this)) (suppose ∃ x, x ∈ s ∧ P x, obtain x [H2 H3], from this, exists.intro x (and.intro (!mem_insert_of_mem H2) H3))) theorem exists_mem_insert_eq {A : Type} [d : decidable_eq A] (a : A) (s : finset A) (P : A → Prop) : (∃ x, x ∈ insert a s ∧ P x) = (P a ∨ (∃ x, x ∈ s ∧ P x)) := propext !exists_mem_insert_iff theorem forall_mem_empty_iff {A : Type} (P : A → Prop) : (∀ x, x ∈ ∅ → P x) ↔ true := iff.intro (assume H, trivial) (assume H, take x, assume H', absurd H' !not_mem_empty) theorem forall_mem_empty_eq {A : Type} (P : A → Prop) : (∀ x, x ∈ ∅ → P x) = true := propext !forall_mem_empty_iff theorem forall_mem_insert_iff {A : Type} [d : decidable_eq A] (a : A) (s : finset A) (P : A → Prop) : (∀ x, x ∈ insert a s → P x) ↔ P a ∧ (∀ x, x ∈ s → P x) := iff.intro (assume H, and.intro (H _ !mem_insert) (take x, assume H', H _ (!mem_insert_of_mem H'))) (assume H, take x, assume H' : x ∈ insert a s, or.elim (eq_or_mem_of_mem_insert H') (suppose x = a, eq.subst (eq.symm this) (and.left H)) (suppose x ∈ s, and.right H _ this)) theorem forall_mem_insert_eq {A : Type} [d : decidable_eq A] (a : A) (s : finset A) (P : A → Prop) : (∀ x, x ∈ insert a s → P x) = (P a ∧ (∀ x, x ∈ s → P x)) := propext !forall_mem_insert_iff end finset