/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: data.set.basic Author: Jeremy Avigad, Leonardo de Moura -/ import logic open eq.ops definition set [reducible] (T : Type) := T → Prop namespace set variable {T : Type} /- membership and subset -/ definition mem [reducible] (x : T) (a : set T) := a x notation e ∈ a := mem e a theorem setext {a b : set T} (H : ∀x, x ∈ a ↔ x ∈ b) : a = b := funext (take x, propext (H x)) definition subset (a b : set T) := ∀⦃x⦄, x ∈ a → x ∈ b infix `⊆`:50 := subset /- bounded quantification -/ abbreviation bounded_forall (a : set T) (P : T → Prop) := ∀⦃x⦄, x ∈ a → P x notation `forallb` binders `∈` a `,` r:(scoped:1 P, P) := bounded_forall a r notation `∀₀` binders `∈` a `,` r:(scoped:1 P, P) := bounded_forall a r abbreviation bounded_exists (a : set T) (P : T → Prop) := ∃⦃x⦄, x ∈ a ∧ P x notation `existsb` binders `∈` a `,` r:(scoped:1 P, P) := bounded_exists a r notation `∃₀` binders `∈` a `,` r:(scoped:1 P, P) := bounded_exists a r /- empty set -/ definition empty [reducible] : set T := λx, false notation `∅` := empty theorem mem_empty (x : T) : ¬ (x ∈ ∅) := assume H : x ∈ ∅, H /- universal set -/ definition univ : set T := λx, true theorem mem_univ (x : T) : x ∈ univ := trivial /- intersection -/ definition inter [reducible] (a b : set T) : set T := λx, x ∈ a ∧ x ∈ b notation a ∩ b := inter a b theorem mem_inter (x : T) (a b : set T) : x ∈ a ∩ b ↔ x ∈ a ∧ x ∈ b := !iff.refl theorem inter_self (a : set T) : a ∩ a = a := setext (take x, !and_self) theorem inter_empty (a : set T) : a ∩ ∅ = ∅ := setext (take x, !and_false) theorem empty_inter (a : set T) : ∅ ∩ a = ∅ := setext (take x, !false_and) theorem inter.comm (a b : set T) : a ∩ b = b ∩ a := setext (take x, !and.comm) theorem inter.assoc (a b c : set T) : (a ∩ b) ∩ c = a ∩ (b ∩ c) := setext (take x, !and.assoc) /- union -/ definition union [reducible] (a b : set T) : set T := λx, x ∈ a ∨ x ∈ b notation a ∪ b := union a b theorem mem_union (x : T) (a b : set T) : x ∈ a ∪ b ↔ x ∈ a ∨ x ∈ b := !iff.refl theorem union_self (a : set T) : a ∪ a = a := setext (take x, !or_self) theorem union_empty (a : set T) : a ∪ ∅ = a := setext (take x, !or_false) theorem empty_union (a : set T) : ∅ ∪ a = a := setext (take x, !false_or) theorem union.comm (a b : set T) : a ∪ b = b ∪ a := setext (take x, or.comm) theorem union_assoc (a b c : set T) : (a ∪ b) ∪ c = a ∪ (b ∪ c) := setext (take x, or.assoc) /- set-builder notation -/ -- {x : T | P} definition set_of (P : T → Prop) : set T := P notation `{` binders `|` r:(scoped:1 P, set_of P) `}` := r -- {[x, y, z]} or ⦃x, y, z⦄ definition insert (x : T) (a : set T) : set T := {y : T | y = x ∨ y ∈ a} notation `{[`:max a:(foldr `,` (x b, insert x b) ∅) `]}`:0 := a notation `⦃` a:(foldr `,` (x b, insert x b) ∅) `⦄` := a /- large unions -/ section variables {I : Type} variable a : set I variable b : I → set T variable C : set (set T) definition Inter : set T := {x : T | ∀i, x ∈ b i} definition bInter : set T := {x : T | ∀₀ i ∈ a, x ∈ b i} definition sInter : set T := {x : T | ∀₀ c ∈ C, x ∈ c} definition Union : set T := {x : T | ∃i, x ∈ b i} definition bUnion : set T := {x : T | ∃₀ i ∈ a, x ∈ b i} definition sUnion : set T := {x : T | ∃₀ c ∈ C, x ∈ c} -- TODO: need notation for these end end set