Variable N : Type Variable h : N -> N -> N -- Specialize congruence theorem for h-applications Theorem CongrH {a1 a2 b1 b2 : N} (H1 : a1 = b1) (H2 : a2 = b2) : (h a1 a2) = (h b1 b2) := Congr (Congr (Refl h) H1) H2 -- Declare some variables Variable a : N Variable b : N Variable c : N Variable d : N Variable e : N -- Add axioms stating facts about these variables Axiom H1 : (a = b ∧ b = c) ∨ (d = c ∧ a = d) Axiom H2 : b = e -- Proof that (h a b) = (h c e) Theorem T1 : (h a b) = (h c e) := DisjCases H1 (λ C1, CongrH (Trans (Conjunct1 C1) (Conjunct2 C1)) H2) (λ C2, CongrH (Trans (Conjunct2 C2) (Conjunct1 C2)) H2) -- We can use theorem T1 to prove other theorems Theorem T2 : (h a (h a b)) = (h a (h c e)) := CongrH (Refl a) T1 -- Display the last two objects (i.e., theorems) added to the environment print Environment 2 -- print implicit arguments SetOption lean::pp::implicit true SetOption pp::width 150 print Environment 2