Import tactic. Import Int. Variable f : Int -> Int -> Bool Variable P : Int -> Int -> Bool Axiom Ax1 (x y : Int) (H : P x y) : (f x y) Theorem T1 (a : Int) : (P a a) => (f a a). apply Discharge. apply Ax1. exact. done. Variable b : Int Axiom Ax2 (x : Int) : (f x b) (* simple_tac = Repeat(OrElse(imp_tac(), assumption_tac(), apply_tac("Ax2"), apply_tac("Ax1"))) *) Theorem T2 (a : Int) : (P a a) => (f a a). simple_tac. done. Theorem T3 (a : Int) : (P a a) => (f a a). Repeat (OrElse (apply Discharge) exact (apply Ax2) (apply Ax1)). done. print Environment 2.