(* import("tactic.lua") *) Variables p q r : Bool Theorem T1 : p => q => p /\ q := Discharge (fun H1, Discharge (fun H2, let H1 : p := _, H2 : q := _ in Conj H1 H2 )). exact -- solve first metavar done exact -- solve second metavar done (* simple_tac = Repeat(imp_tac() ^ conj_tac() ^ assumption_tac()) *) Theorem T2 : p => q => p /\ q /\ p := _. simple_tac done print Environment 1 Theorem T3 : p => p /\ q => r => q /\ r /\ p := _. (* Repeat(OrElse(imp_tac(), conj_tac(), conj_hyp_tac(), assumption_tac())) *) done -- Display proof term generated by previous tac print Environment 1 Theorem T4 : p => p /\ q => r => q /\ r /\ p := _. Repeat (OrElse (apply Discharge) (apply Conj) conj_hyp exact) done -- Display proof term generated by previous tac -- print Environment 1