/* Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura */ #include #include #include "util/sstream.h" #include "util/timeit.h" #include "kernel/type_checker.h" #include "kernel/abstract.h" #include "kernel/replace_fn.h" #include "kernel/for_each_fn.h" #include "library/scoped_ext.h" #include "library/aliases.h" #include "library/private.h" #include "library/protected.h" #include "library/placeholder.h" #include "library/locals.h" #include "library/explicit.h" #include "library/abbreviation.h" #include "library/definitional/equations.h" #include "library/error_handling/error_handling.h" #include "frontends/lean/parser.h" #include "frontends/lean/util.h" #include "frontends/lean/tokens.h" #include "frontends/lean/decl_attributes.h" #include "frontends/lean/update_environment_exception.h" #include "frontends/lean/nested_declaration.h" namespace lean { static environment declare_universe(parser & p, environment env, name const & n, bool local) { if (local) { p.add_local_level(n, mk_param_univ(n), local); } else if (in_section(env)) { p.add_local_level(n, mk_param_univ(n), false); } else { name const & ns = get_namespace(env); name full_n = ns + n; env = module::add_universe(env, full_n); if (!ns.is_anonymous()) env = add_level_alias(env, n, full_n); } return env; } static environment universes_cmd_core(parser & p, bool local) { if (!p.curr_is_identifier()) throw parser_error("invalid 'universes' command, identifier expected", p.pos()); environment env = p.env(); while (p.curr_is_identifier()) { name n = p.get_name_val(); p.next(); env = declare_universe(p, env, n, local); } return env; } static environment universe_cmd(parser & p) { if (p.curr_is_token(get_variables_tk())) { p.next(); return universes_cmd_core(p, true); } else { bool local = false; if (p.curr_is_token(get_variable_tk())) { p.next(); local = true; } name n = p.check_id_next("invalid 'universe' command, identifier expected"); return declare_universe(p, p.env(), n, local); } } static environment universes_cmd(parser & p) { return universes_cmd_core(p, false); } bool parse_univ_params(parser & p, buffer & ps) { if (p.curr_is_token(get_llevel_curly_tk())) { p.next(); while (!p.curr_is_token(get_rcurly_tk())) { name l = p.check_id_next("invalid universe parameter, identifier expected"); p.add_local_level(l, mk_param_univ(l)); ps.push_back(l); } p.next(); return true; } else{ return false; } } void update_univ_parameters(buffer & ls_buffer, name_set const & found, parser const & p) { unsigned old_sz = ls_buffer.size(); found.for_each([&](name const & n) { if (std::find(ls_buffer.begin(), ls_buffer.begin() + old_sz, n) == ls_buffer.begin() + old_sz) ls_buffer.push_back(n); }); std::sort(ls_buffer.begin(), ls_buffer.end(), [&](name const & n1, name const & n2) { return p.get_local_level_index(n1) < p.get_local_level_index(n2); }); } enum class variable_kind { Constant, Parameter, Variable, Axiom }; static void check_parameter_type(parser & p, name const & n, expr const & type, pos_info const & pos) { for_each(type, [&](expr const & e, unsigned) { if (is_local(e) && p.is_local_variable(e)) throw parser_error(sstream() << "invalid parameter declaration '" << n << "', it depends on " << "variable '" << local_pp_name(e) << "'", pos); return true; }); } static environment declare_var(parser & p, environment env, name const & n, level_param_names const & ls, expr const & type, variable_kind k, optional const & _bi, pos_info const & pos, bool is_protected) { binder_info bi; if (_bi) bi = *_bi; if (k == variable_kind::Parameter || k == variable_kind::Variable) { if (k == variable_kind::Parameter) { check_in_section(p); check_parameter_type(p, n, type, pos); } if (p.get_local(n)) throw parser_error(sstream() << "invalid parameter/variable declaration, '" << n << "' has already been declared", pos); name u = p.mk_fresh_name(); expr l = p.save_pos(mk_local(u, n, type, bi), pos); if (k == variable_kind::Parameter) p.add_parameter(n, l); else p.add_local_expr(n, l, k == variable_kind::Variable); return env; } else { lean_assert(k == variable_kind::Constant || k == variable_kind::Axiom); name const & ns = get_namespace(env); name full_n = ns + n; expr new_type = postprocess(env, type); if (k == variable_kind::Axiom) { env = module::add(env, check(env, mk_axiom(full_n, ls, new_type))); p.add_decl_index(full_n, pos, get_axiom_tk(), new_type); } else { env = module::add(env, check(env, mk_constant_assumption(full_n, ls, new_type))); p.add_decl_index(full_n, pos, get_variable_tk(), new_type); } if (!ns.is_anonymous()) { if (is_protected) env = add_expr_alias(env, get_protected_shortest_name(full_n), full_n); else env = add_expr_alias(env, n, full_n); } if (is_protected) env = add_protected(env, full_n); return env; } } /** \brief If we are in a section, then add the new local levels to it. */ static void update_local_levels(parser & p, level_param_names const & new_ls, bool is_variable) { for (auto const & l : new_ls) p.add_local_level(l, mk_param_univ(l), is_variable); } optional parse_binder_info(parser & p, variable_kind k) { optional bi = p.parse_optional_binder_info(); if (bi && k != variable_kind::Parameter && k != variable_kind::Variable) parser_error("invalid binder annotation, it can only be used to declare variables/parameters", p.pos()); return bi; } static void check_variable_kind(parser & p, variable_kind k) { if (in_section(p.env())) { if (k == variable_kind::Axiom || k == variable_kind::Constant) throw parser_error("invalid declaration, 'constant/axiom' cannot be used in sections", p.pos()); } else if (!in_section(p.env()) && k == variable_kind::Parameter) { throw parser_error("invalid declaration, 'parameter/hypothesis/conjecture' " "can only be used in sections", p.pos()); } } static void update_local_binder_info(parser & p, variable_kind k, name const & n, optional const & bi, pos_info const & pos) { binder_info new_bi; if (bi) new_bi = *bi; if (k == variable_kind::Parameter) { if (p.is_local_variable(n)) throw parser_error(sstream() << "invalid parameter binder type update, '" << n << "' is a variable", pos); if (!p.update_local_binder_info(n, new_bi)) throw parser_error(sstream() << "invalid parameter binder type update, '" << n << "' is not a parameter", pos); } else { if (!p.update_local_binder_info(n, new_bi) || !p.is_local_variable(n)) throw parser_error(sstream() << "invalid variable binder type update, '" << n << "' is not a variable", pos); } } static bool curr_is_binder_annotation(parser & p) { return p.curr_is_token(get_lparen_tk()) || p.curr_is_token(get_lcurly_tk()) || p.curr_is_token(get_ldcurly_tk()) || p.curr_is_token(get_lbracket_tk()); } static environment variable_cmd_core(parser & p, variable_kind k, bool is_protected = false) { check_variable_kind(p, k); auto pos = p.pos(); optional bi = parse_binder_info(p, k); name n = p.check_id_next("invalid declaration, identifier expected"); buffer ls_buffer; if (p.curr_is_token(get_llevel_curly_tk()) && (k == variable_kind::Parameter || k == variable_kind::Variable)) throw parser_error("invalid declaration, only constants/axioms can be universe polymorphic", p.pos()); optional scope1; if (k == variable_kind::Constant || k == variable_kind::Axiom) scope1.emplace(p); parse_univ_params(p, ls_buffer); expr type; if (!p.curr_is_token(get_colon_tk())) { if (!curr_is_binder_annotation(p) && (k == variable_kind::Parameter || k == variable_kind::Variable)) { p.parse_close_binder_info(bi); update_local_binder_info(p, k, n, bi, pos); return p.env(); } else { buffer ps; unsigned rbp = 0; auto lenv = p.parse_binders(ps, rbp); p.check_token_next(get_colon_tk(), "invalid declaration, ':' expected"); type = p.parse_scoped_expr(ps, lenv); type = Pi(ps, type, p); } } else { p.next(); type = p.parse_expr(); } p.parse_close_binder_info(bi); check_command_period_or_eof(p); level_param_names ls; if (ls_buffer.empty()) { ls = to_level_param_names(collect_univ_params(type)); } else { update_univ_parameters(ls_buffer, collect_univ_params(type), p); ls = to_list(ls_buffer.begin(), ls_buffer.end()); } level_param_names new_ls; list ctx = p.locals_to_context(); std::tie(type, new_ls) = p.elaborate_type(type, ctx); if (k == variable_kind::Variable || k == variable_kind::Parameter) update_local_levels(p, new_ls, k == variable_kind::Variable); return declare_var(p, p.env(), n, append(ls, new_ls), type, k, bi, pos, is_protected); } static environment variable_cmd(parser & p) { return variable_cmd_core(p, variable_kind::Variable); } static environment axiom_cmd(parser & p) { return variable_cmd_core(p, variable_kind::Axiom); } static environment constant_cmd(parser & p) { return variable_cmd_core(p, variable_kind::Constant); } static environment parameter_cmd(parser & p) { return variable_cmd_core(p, variable_kind::Parameter); } static environment variables_cmd_core(parser & p, variable_kind k, bool is_protected = false) { check_variable_kind(p, k); auto pos = p.pos(); environment env = p.env(); optional bi = parse_binder_info(p, k); buffer ids; while (p.curr_is_identifier()) { name id = p.get_name_val(); p.next(); ids.push_back(id); } if (p.curr_is_token(get_colon_tk())) { p.next(); } else { if (k == variable_kind::Parameter || k == variable_kind::Variable) { p.parse_close_binder_info(bi); for (name const & id : ids) { update_local_binder_info(p, k, id, bi, pos); } if (curr_is_binder_annotation(p)) return variables_cmd_core(p, k); else return env; } else { throw parser_error("invalid variables/constants/axioms declaration, ':' expected", pos); } } optional scope1; if (k == variable_kind::Constant || k == variable_kind::Axiom) scope1.emplace(p); expr type = p.parse_expr(); p.parse_close_binder_info(bi); level_param_names ls = to_level_param_names(collect_univ_params(type)); list ctx = p.locals_to_context(); for (auto id : ids) { // Hack: to make sure we get different universe parameters for each parameter. // Alternative: elaborate once and copy types replacing universes in new_ls. level_param_names new_ls; expr new_type; check_command_period_open_binder_or_eof(p); std::tie(new_type, new_ls) = p.elaborate_type(type, ctx); if (k == variable_kind::Variable || k == variable_kind::Parameter) update_local_levels(p, new_ls, k == variable_kind::Variable); new_ls = append(ls, new_ls); env = declare_var(p, env, id, new_ls, new_type, k, bi, pos, is_protected); } if (curr_is_binder_annotation(p)) { if (k == variable_kind::Constant || k == variable_kind::Axiom) { // Hack: temporarily update the parser environment. // We must do that to be able to process // constants (A : Type) (a : A) parser::local_scope scope2(p, env); return variables_cmd_core(p, k); } else { return variables_cmd_core(p, k); } } return env; } static environment variables_cmd(parser & p) { return variables_cmd_core(p, variable_kind::Variable); } static environment parameters_cmd(parser & p) { return variables_cmd_core(p, variable_kind::Parameter); } static environment constants_cmd(parser & p) { return variables_cmd_core(p, variable_kind::Constant); } static environment axioms_cmd(parser & p) { return variables_cmd_core(p, variable_kind::Axiom); } static void check_end_of_theorem(parser const & p) { if (!p.curr_is_command_like()) throw parser_error("':=', '.', command, script, or end-of-file expected", p.pos()); } static void erase_local_binder_info(buffer & ps) { for (expr & p : ps) p = update_local(p, binder_info()); } static bool is_curr_with_or_comma_or_bar(parser & p) { return p.curr_is_token(get_with_tk()) || p.curr_is_token(get_comma_tk()) || p.curr_is_token(get_bar_tk()); } /** For convenience, the left-hand-side of a recursive equation may contain undeclared variables. We use parser::undef_id_to_local_scope to force the parser to create a local constant for each undefined identifier. This method validates occurrences of these variables. They can only occur as an application or macro argument. */ static void validate_equation_lhs(parser const & p, expr const & lhs, buffer const & locals) { if (is_app(lhs)) { validate_equation_lhs(p, app_fn(lhs), locals); validate_equation_lhs(p, app_arg(lhs), locals); } else if (is_macro(lhs)) { for (unsigned i = 0; i < macro_num_args(lhs); i++) validate_equation_lhs(p, macro_arg(lhs, i), locals); } else if (!is_local(lhs)) { for_each(lhs, [&](expr const & e, unsigned) { if (is_local(e) && std::any_of(locals.begin(), locals.end(), [&](expr const & local) { return mlocal_name(e) == mlocal_name(local); })) { throw parser_error(sstream() << "invalid occurrence of variable '" << mlocal_name(e) << "' in the left-hand-side of recursive equation", p.pos_of(lhs)); } return has_local(e); }); } } /** \brief Merge multiple occurrences of a variable in the left-hand-side of a recursive equation. \see validate_equation_lhs */ static expr merge_equation_lhs_vars(expr const & lhs, buffer & locals) { expr_map m; unsigned j = 0; for (unsigned i = 0; i < locals.size(); i++) { unsigned k; for (k = 0; k < i; k++) { if (mlocal_name(locals[k]) == mlocal_name(locals[i])) { m.insert(mk_pair(locals[i], locals[k])); break; } } if (k == i) { locals[j] = locals[i]; j++; } } if (j == locals.size()) return lhs; locals.shrink(j); return replace(lhs, [&](expr const & e) { if (!has_local(e)) return some_expr(e); if (is_local(e)) { auto it = m.find(e); if (it != m.end()) return some_expr(it->second); } return none_expr(); }); } [[ noreturn ]] static void throw_invalid_equation_lhs(name const & n, pos_info const & p) { throw parser_error(sstream() << "invalid recursive equation, head symbol '" << n << "' in the left-hand-side does not correspond to function(s) being defined", p); } static bool is_eqn_prefix(parser & p, bool bar_only = false) { return p.curr_is_token(get_bar_tk()) || (!bar_only && p.curr_is_token(get_comma_tk())); } static void check_eqn_prefix(parser & p) { if (!is_eqn_prefix(p)) throw parser_error("invalid declaration, ',' or '|' expected", p.pos()); p.next(); } static optional is_equation_fn(buffer const & fns, name const & fn_name) { for (expr const & fn : fns) { if (local_pp_name(fn) == fn_name) return some_expr(fn); } return none_expr(); } static expr get_equation_fn(buffer const & fns, name const & fn_name, pos_info const & lhs_pos) { if (auto it = is_equation_fn(fns, fn_name)) return *it; throw_invalid_equation_lhs(fn_name, lhs_pos); } static void parse_equations_core(parser & p, buffer const & fns, buffer & eqns, bool bar_only = false) { for (expr const & fn : fns) p.add_local(fn); while (true) { expr lhs; unsigned prev_num_undef_ids = p.get_num_undef_ids(); buffer locals; { parser::undef_id_to_local_scope scope2(p); buffer lhs_args; auto lhs_pos = p.pos(); if (p.curr_is_token(get_explicit_tk())) { p.next(); name fn_name = p.check_id_next("invalid recursive equation, identifier expected"); lhs_args.push_back(p.save_pos(mk_explicit(get_equation_fn(fns, fn_name, lhs_pos)), lhs_pos)); } else { expr first = p.parse_expr(get_max_prec()); expr fn = first; if (is_explicit(fn)) fn = get_explicit_arg(fn); if (is_local(fn) && is_equation_fn(fns, local_pp_name(fn))) { lhs_args.push_back(first); } else if (fns.size() == 1) { lhs_args.push_back(p.save_pos(mk_explicit(fns[0]), lhs_pos)); lhs_args.push_back(first); } else { throw parser_error("invalid recursive equation, head symbol in left-hand-side is not a constant", lhs_pos); } } while (!p.curr_is_token(get_assign_tk())) lhs_args.push_back(p.parse_expr(get_max_prec())); lean_assert(lhs_args.size() > 0); lhs = lhs_args[0]; for (unsigned i = 1; i < lhs_args.size(); i++) lhs = copy_tag(lhs_args[i], mk_app(lhs, lhs_args[i])); unsigned num_undef_ids = p.get_num_undef_ids(); for (unsigned i = prev_num_undef_ids; i < num_undef_ids; i++) { locals.push_back(p.get_undef_id(i)); } } validate_equation_lhs(p, lhs, locals); lhs = merge_equation_lhs_vars(lhs, locals); auto assign_pos = p.pos(); p.check_token_next(get_assign_tk(), "invalid declaration, ':=' expected"); { parser::local_scope scope2(p); for (expr const & local : locals) p.add_local(local); expr rhs = p.parse_expr(); eqns.push_back(Fun(fns, Fun(locals, p.save_pos(mk_equation(lhs, rhs), assign_pos), p))); } if (!is_eqn_prefix(p, bar_only)) break; p.next(); } } expr parse_equations(parser & p, name const & n, expr const & type, buffer & auxs, optional const & lenv, buffer const & ps, pos_info const & def_pos) { buffer fns; buffer eqns; { parser::local_scope scope1(p, lenv); for (expr const & param : ps) p.add_local(param); lean_assert(is_curr_with_or_comma_or_bar(p)); fns.push_back(mk_local(n, type)); if (p.curr_is_token(get_with_tk())) { while (p.curr_is_token(get_with_tk())) { p.next(); auto pos = p.pos(); name g_name = p.check_id_next("invalid declaration, identifier expected"); p.check_token_next(get_colon_tk(), "invalid declaration, ':' expected"); expr g_type = p.parse_expr(); expr g = p.save_pos(mk_local(g_name, g_type), pos); auxs.push_back(g_name); fns.push_back(g); } } check_eqn_prefix(p); if (p.curr_is_token(get_none_tk())) { // no equations have been provided p.next(); eqns.push_back(Fun(fns, mk_no_equation(), p)); } else { parse_equations_core(p, fns, eqns); } } if (p.curr_is_token(get_wf_tk())) { auto pos = p.pos(); p.next(); expr R = p.save_pos(mk_expr_placeholder(), pos); expr Hwf = p.parse_expr(); return p.save_pos(mk_equations(fns.size(), eqns.size(), eqns.data(), R, Hwf), def_pos); } else { return p.save_pos(mk_equations(fns.size(), eqns.size(), eqns.data()), def_pos); } } /** \brief Parse a sequence of equations of the form | lhs := rhs */ expr parse_local_equations(parser & p, expr const & fn) { lean_assert(p.curr_is_token(get_bar_tk())); auto pos = p.pos(); p.next(); buffer fns; buffer eqns; fns.push_back(fn); bool bar_only = true; parse_equations_core(p, fns, eqns, bar_only); return p.save_pos(mk_equations(fns.size(), eqns.size(), eqns.data()), pos); } static name * g_match_name = nullptr; bool is_match_binder_name(name const & n) { return n == *g_match_name; } /** \brief Use equations compiler infrastructure to implement match-with */ expr parse_match(parser & p, unsigned, expr const *, pos_info const & pos) { buffer eqns; expr t; try { t = p.parse_expr(); p.check_token_next(get_with_tk(), "invalid 'match' expression, 'with' expected"); expr fn = mk_local(p.mk_fresh_name(), *g_match_name, mk_expr_placeholder(), binder_info()); if (p.curr_is_token(get_end_tk())) { p.next(); // empty match-with eqns.push_back(Fun(fn, mk_no_equation())); expr f = p.save_pos(mk_equations(1, eqns.size(), eqns.data()), pos); return p.mk_app(f, t, pos); } if (is_eqn_prefix(p)) p.next(); // optional '|' in the first case while (true) { expr lhs; unsigned prev_num_undef_ids = p.get_num_undef_ids(); buffer locals; { parser::undef_id_to_local_scope scope2(p); auto lhs_pos = p.pos(); lhs = p.parse_expr(); lhs = p.mk_app(fn, lhs, lhs_pos); unsigned num_undef_ids = p.get_num_undef_ids(); for (unsigned i = prev_num_undef_ids; i < num_undef_ids; i++) { locals.push_back(p.get_undef_id(i)); } } validate_equation_lhs(p, lhs, locals); lhs = merge_equation_lhs_vars(lhs, locals); auto assign_pos = p.pos(); p.check_token_next(get_assign_tk(), "invalid 'match' expression, ':=' expected"); { parser::local_scope scope2(p); for (expr const & local : locals) p.add_local(local); expr rhs = p.parse_expr(); eqns.push_back(Fun(fn, Fun(locals, p.save_pos(mk_equation(lhs, rhs), assign_pos), p))); } if (!is_eqn_prefix(p)) break; p.next(); } } catch (exception & ex) { consume_until_end(p); ex.rethrow(); } p.check_token_next(get_end_tk(), "invalid 'match' expression, 'end' expected"); expr f = p.save_pos(mk_equations(1, eqns.size(), eqns.data()), pos); return p.mk_app(f, t, pos); } // An Lean example is not really a definition, but we use the definition infrastructure to simulate it. enum def_cmd_kind { Theorem, Definition, Example, Abbreviation, LocalAbbreviation }; class definition_cmd_fn { parser & m_p; environment m_env; def_cmd_kind m_kind; bool m_is_private; bool m_is_protected; pos_info m_pos; name m_name; decl_attributes m_attributes; name m_real_name; // real name for this declaration buffer m_ls_buffer; buffer m_aux_decls; // user provided names for aux_decls buffer m_real_aux_names; // real names for aux_decls buffer m_aux_types; // types of auxiliary decls expr m_type; expr m_value; level_param_names m_ls; pos_info m_end_pos; expr m_pre_type; expr m_pre_value; // Checkpoint for processing definition/theorem as axiom in case of // failure optional m_type_checkpoint; optional m_env_checkpoint; buffer m_ls_buffer_checkpoint; void save_checkpoint() { if (m_kind != Example) { m_type_checkpoint = m_type; m_env_checkpoint = m_env; m_ls_buffer_checkpoint = m_ls_buffer; } } bool is_definition() const { return m_kind == Definition || m_kind == Abbreviation || m_kind == LocalAbbreviation; } unsigned start_line() const { return m_pos.first; } unsigned end_line() const { return m_end_pos.first; } void parse_name() { if (m_kind == Example) m_name = name{"example"}; else m_name = m_p.check_id_next("invalid declaration, identifier expected"); } expr extract_nested(expr const & v) { expr new_v; std::tie(m_env, new_v) = extract_nested_declarations(m_env, m_p.ios(), m_name, v); return new_v; } void parse_type_value() { // Parse universe parameters parser::local_scope scope1(m_p); parse_univ_params(m_p, m_ls_buffer); // Parse modifiers m_attributes.parse(m_p); if (m_p.curr_is_token(get_assign_tk())) { auto pos = m_p.pos(); m_p.next(); m_type = m_p.save_pos(mk_expr_placeholder(), pos); m_value = m_p.parse_expr(); } else if (m_p.curr_is_token(get_colon_tk())) { m_p.next(); auto pos = m_p.pos(); m_type = m_p.parse_expr(); save_checkpoint(); if (is_curr_with_or_comma_or_bar(m_p)) { allow_nested_decls_scope scope2(is_definition()); m_value = parse_equations(m_p, m_name, m_type, m_aux_decls, optional(), buffer(), m_pos); } else if (!is_definition() && !m_p.curr_is_token(get_assign_tk())) { check_end_of_theorem(m_p); m_value = m_p.save_pos(mk_expr_placeholder(), pos); } else { m_p.check_token_next(get_assign_tk(), "invalid declaration, ':=' expected"); allow_nested_decls_scope scope2(is_definition()); m_value = m_p.save_pos(m_p.parse_expr(), pos); } } else { buffer ps; optional lenv; bool last_block_delimited = false; lenv = m_p.parse_binders(ps, last_block_delimited); auto pos = m_p.pos(); if (m_p.curr_is_token(get_colon_tk())) { m_p.next(); expr type = m_p.parse_scoped_expr(ps, *lenv); m_type = Pi(ps, type, m_p); save_checkpoint(); if (is_curr_with_or_comma_or_bar(m_p)) { allow_nested_decls_scope scope2(is_definition()); m_value = parse_equations(m_p, m_name, type, m_aux_decls, lenv, ps, m_pos); } else if (!is_definition() && !m_p.curr_is_token(get_assign_tk())) { check_end_of_theorem(m_p); m_value = m_p.save_pos(mk_expr_placeholder(), pos); } else { allow_nested_decls_scope scope2(is_definition()); m_p.check_token_next(get_assign_tk(), "invalid declaration, ':=' expected"); m_value = m_p.parse_scoped_expr(ps, *lenv); } } else { if (!last_block_delimited && !ps.empty() && !is_placeholder(mlocal_type(ps.back()))) { throw parser_error("invalid declaration, ambiguous parameter declaration, " "(solution: put parentheses around parameters)", pos); } m_type = m_p.save_pos(mk_expr_placeholder(), m_p.pos()); m_type = Pi(ps, m_type, m_p); save_checkpoint(); m_p.check_token_next(get_assign_tk(), "invalid declaration, ':=' expected"); allow_nested_decls_scope scope2(is_definition()); m_value = m_p.parse_scoped_expr(ps, *lenv); } erase_local_binder_info(ps); m_value = Fun(ps, m_value, m_p); } m_end_pos = m_p.pos(); } void mk_real_name() { if (m_is_private) { unsigned h = hash(m_pos.first, m_pos.second); auto env_n = add_private_name(m_env, m_name, optional(h)); m_env = env_n.first; m_real_name = env_n.second; for (name const & aux : m_aux_decls) { auto env_n = add_private_name(m_env, aux, optional(h)); m_env = env_n.first; m_real_aux_names.push_back(env_n.second); } } else { name const & ns = get_namespace(m_env); m_real_name = ns + m_name; for (name const & aux : m_aux_decls) m_real_aux_names.push_back(ns + aux); } } void parse() { parse_name(); parse_type_value(); check_command_period_or_eof(m_p); if (m_p.used_sorry()) m_p.declare_sorry(); m_env = m_p.env(); mk_real_name(); } void display_pos(std::ostream & out) { ::lean::display_pos(out, m_p.get_stream_name().c_str(), m_pos.first, m_pos.second); } certified_declaration check(declaration const & d) { if (m_p.profiling()) { std::ostringstream msg; display_pos(msg); msg << " type checking time for " << m_name; timeit timer(m_p.diagnostic_stream().get_stream(), msg.str().c_str()); return ::lean::check(m_env, d); } else { return ::lean::check(m_env, d); } } void process_locals() { if (m_p.has_locals()) { buffer locals; collect_locals(m_type, m_value, m_p, locals); m_type = Pi_as_is(locals, m_type, m_p); buffer new_locals; new_locals.append(locals); erase_local_binder_info(new_locals); m_value = Fun_as_is(new_locals, m_value, m_p); auto ps = collect_univ_params_ignoring_tactics(m_type); ps = collect_univ_params_ignoring_tactics(m_value, ps); update_univ_parameters(m_ls_buffer, ps, m_p); remove_local_vars(m_p, locals); m_ls = to_list(m_ls_buffer.begin(), m_ls_buffer.end()); levels local_ls = collect_local_nonvar_levels(m_p, m_ls); local_ls = remove_local_vars(m_p, local_ls); if (!locals.empty()) { expr ref = mk_local_ref(m_real_name, local_ls, locals); m_env = m_p.add_local_ref(m_env, m_name, ref); } else if (local_ls) { expr ref = mk_constant(m_real_name, local_ls); m_env = m_p.add_local_ref(m_env, m_name, ref); } } else { update_univ_parameters(m_ls_buffer, collect_univ_params(m_value, collect_univ_params(m_type)), m_p); m_ls = to_list(m_ls_buffer.begin(), m_ls_buffer.end()); } } bool try_cache() { // We don't cache examples. // We don't cache mutually recursive definitions (if this becomes a performance problem, we can fix it). if (m_kind != Example && m_p.are_info_lines_valid(start_line(), end_line()) && m_aux_decls.size() == 0) { // we only use the cache if the information associated with the line is valid if (auto it = m_p.find_cached_definition(m_real_name, m_type, m_value)) { optional cd; try { level_param_names c_ls; expr c_type, c_value; std::tie(c_ls, c_type, c_value) = *it; // cache may have been created using a different trust level c_type = postprocess(m_env, c_type); c_value = postprocess(m_env, c_value); if (m_kind == Theorem) { cd = check(mk_theorem(m_env, m_real_name, c_ls, c_type, c_value)); if (m_p.keep_new_thms()) { if (!m_is_private) m_p.add_decl_index(m_real_name, m_pos, m_p.get_cmd_token(), c_type); m_p.add_delayed_theorem(*cd); } cd = check(mk_axiom(m_real_name, c_ls, c_type)); m_env = module::add(m_env, *cd); } else { c_value = extract_nested(c_value); cd = check(mk_definition(m_env, m_real_name, c_ls, c_type, c_value)); if (!m_is_private) m_p.add_decl_index(m_real_name, m_pos, m_p.get_cmd_token(), c_type); m_env = module::add(m_env, *cd); } return true; } catch (exception&) {} } } return false; } void register_decl(name const & n, name const & real_n, expr const & type) { if (m_kind != Example) { // TODO(Leo): register aux_decls if (!m_is_private) m_p.add_decl_index(real_n, m_pos, m_p.get_cmd_token(), type); if (m_is_protected) m_env = add_protected(m_env, real_n); if (n != real_n) { if (m_is_protected) m_env = add_expr_alias_rec(m_env, get_protected_shortest_name(real_n), real_n); else m_env = add_expr_alias_rec(m_env, n, real_n); } if (m_kind == Abbreviation || m_kind == LocalAbbreviation) { bool persistent = m_kind == Abbreviation; m_env = add_abbreviation(m_env, real_n, m_attributes.is_parsing_only(), persistent); } m_env = m_attributes.apply(m_env, m_p.ios(), real_n); } } void register_decl() { register_decl(m_name, m_real_name, m_type); for (unsigned i = 0; i < m_aux_decls.size(); i++) { register_decl(m_aux_decls[i], m_real_aux_names[i], m_aux_types[i]); } } // When compiling mutually recursive equations or equations based on well-found recursion, // the equations compiler produces a result that combines different definitions. // We say the result is "tangled". This method untangles it. // The tangled result is of the form // Fun (a : A), [equations_result main-value aux-type-1 aux-value-1 ... aux-type-i aux-value-i] // // The result is the updated value. The auxiliary definitions (type and value) are stored at m_aux_types and aux_values expr untangle_definitions(expr const & type, expr const & value, buffer & aux_values) { if (is_lambda(value)) { lean_assert(is_pi(type)); expr r = untangle_definitions(binding_body(type), binding_body(value), aux_values); lean_assert(aux_values.size() == m_aux_types.size()); for (unsigned i = 0; i < aux_values.size(); i++) { m_aux_types[i] = mk_pi(binding_name(type), binding_domain(type), m_aux_types[i], binding_info(type)); aux_values[i] = mk_lambda(binding_name(value), binding_domain(value), aux_values[i], binding_info(value)); } return update_binding(value, binding_domain(value), r); } else if (is_equations_result(value)) { lean_assert(get_equations_result_size(value) > 1); lean_assert(get_equations_result_size(value) % 2 == 1); for (unsigned i = 1; i < get_equations_result_size(value); i+=2) { m_aux_types.push_back(get_equations_result(value, i)); aux_values.push_back(get_equations_result(value, i+1)); } return get_equations_result(value, 0); } else { throw exception("invalid declaration, unexpected result produced by equations compiler"); } } std::tuple elaborate_type(expr const & e) { bool clear_pre_info = false; // we don't want to clear pre_info data until we process the proof. if (m_p.profiling()) { std::ostringstream msg; display_pos(msg); msg << " type elaboration time for " << m_name; timeit timer(m_p.diagnostic_stream().get_stream(), msg.str().c_str()); return m_p.elaborate_type(e, list(), clear_pre_info); } else { return m_p.elaborate_type(e, list(), clear_pre_info); } } std::tuple elaborate_definition(expr const & type, expr const & value) { if (m_p.profiling()) { std::ostringstream msg; display_pos(msg); msg << " elaboration time for " << m_name; timeit timer(m_p.diagnostic_stream().get_stream(), msg.str().c_str()); return m_p.elaborate_definition(m_name, type, value); } else { return m_p.elaborate_definition(m_name, type, value); } } // Elaborate definitions that contain auxiliary ones nested inside. // Remark: we do not cache this kind of definition. // This method will also initialize m_aux_types void elaborate_multi() { lean_assert(!m_aux_decls.empty()); level_param_names new_ls; std::tie(m_type, m_value, new_ls) = elaborate_definition(m_type, m_value); new_ls = append(m_ls, new_ls); lean_assert(m_aux_types.empty()); buffer aux_values; m_value = untangle_definitions(m_type, m_value, aux_values); lean_assert(aux_values.size() == m_aux_types.size()); if (aux_values.size() != m_real_aux_names.size()) throw exception("invalid declaration, failed to compile auxiliary declarations"); m_type = postprocess(m_env, m_type); m_value = extract_nested(postprocess(m_env, m_value)); for (unsigned i = 0; i < aux_values.size(); i++) { m_aux_types[i] = postprocess(m_env, m_aux_types[i]); aux_values[i] = postprocess(m_env, aux_values[i]); } if (is_definition()) { m_env = module::add(m_env, check(mk_definition(m_env, m_real_name, new_ls, m_type, m_value))); for (unsigned i = 0; i < aux_values.size(); i++) m_env = module::add(m_env, check(mk_definition(m_env, m_real_aux_names[i], new_ls, m_aux_types[i], aux_values[i]))); } else { m_env = module::add(m_env, check(mk_theorem(m_env, m_real_name, new_ls, m_type, m_value))); for (unsigned i = 0; i < aux_values.size(); i++) m_env = module::add(m_env, check(mk_theorem(m_env, m_real_aux_names[i], new_ls, m_aux_types[i], aux_values[i]))); } } void elaborate() { if (!try_cache()) { expr pre_type = m_type; expr pre_value = m_value; level_param_names new_ls; m_p.remove_proof_state_info(m_pos, m_p.pos()); if (!m_aux_decls.empty()) { // TODO(Leo): split equations_result elaborate_multi(); } else if (!is_definition()) { // Theorems and Examples auto type_pos = m_p.pos_of(m_type); std::tie(m_type, new_ls) = elaborate_type(m_type); check_no_metavar(m_env, m_real_name, m_type, true); m_ls = append(m_ls, new_ls); m_type = postprocess(m_env, m_type); expr type_as_is = m_p.save_pos(mk_as_is(m_type), type_pos); if (!m_p.collecting_info() && m_kind == Theorem && m_p.num_threads() > 1) { // Add as axiom, and create a task to prove the theorem. // Remark: we don't postpone the "proof" of Examples. m_p.add_delayed_theorem(m_env, m_real_name, m_ls, type_as_is, m_value); m_env = module::add(m_env, check(mk_axiom(m_real_name, m_ls, m_type))); } else { std::tie(m_type, m_value, new_ls) = elaborate_definition(type_as_is, m_value); m_type = postprocess(m_env, m_type); m_value = postprocess(m_env, m_value); new_ls = append(m_ls, new_ls); auto cd = check(mk_theorem(m_env, m_real_name, new_ls, m_type, m_value)); if (m_kind == Theorem) { // Remark: we don't keep examples if (m_p.keep_new_thms()) { m_p.add_delayed_theorem(cd); } cd = check(mk_axiom(m_real_name, new_ls, m_type)); m_env = module::add(m_env, cd); m_p.cache_definition(m_real_name, pre_type, pre_value, new_ls, m_type, m_value); } } } else { std::tie(m_type, m_value, new_ls) = elaborate_definition(m_type, m_value); new_ls = append(m_ls, new_ls); m_type = postprocess(m_env, m_type); m_value = postprocess(m_env, m_value); expr new_val = extract_nested(m_value); m_env = module::add(m_env, check(mk_definition(m_env, m_real_name, new_ls, m_type, new_val))); // Remark: we cache the definition with the nested declarations. m_p.cache_definition(m_real_name, pre_type, pre_value, new_ls, m_type, m_value); } } } void process_as_axiom() { lean_assert(m_type_checkpoint); m_type = *m_type_checkpoint; m_env = *m_env_checkpoint; m_ls_buffer = m_ls_buffer_checkpoint; m_aux_decls.clear(); m_real_aux_names.clear(); expr dummy = mk_Prop(); m_value = dummy; process_locals(); mk_real_name(); level_param_names new_ls; std::tie(m_type, new_ls) = elaborate_type(m_type); check_no_metavar(m_env, m_real_name, m_type, true); m_ls = append(m_ls, new_ls); m_type = postprocess(m_env, m_type); m_env = module::add(m_env, check(mk_axiom(m_real_name, m_ls, m_type))); register_decl(m_name, m_real_name, m_type); } public: definition_cmd_fn(parser & p, def_cmd_kind kind, bool is_private, bool is_protected): m_p(p), m_env(m_p.env()), m_kind(kind), m_is_private(is_private), m_is_protected(is_protected), m_pos(p.pos()), m_attributes(kind == Abbreviation || kind == LocalAbbreviation) { lean_assert(!(m_is_private && m_is_protected)); } environment operator()() { try { parse(); process_locals(); elaborate(); register_decl(); return m_env; } catch (exception & ex) { if (m_type_checkpoint) { try { process_as_axiom(); } catch (exception & ex2) { ex.rethrow(); } throw update_environment_exception(m_env, std::shared_ptr(ex.clone())); } ex.rethrow(); lean_unreachable(); } } }; static environment definition_cmd_core(parser & p, def_cmd_kind kind, bool is_private, bool is_protected) { return definition_cmd_fn(p, kind, is_private, is_protected)(); } static environment definition_cmd(parser & p) { return definition_cmd_core(p, Definition, false, false); } static environment abbreviation_cmd(parser & p) { return definition_cmd_core(p, Abbreviation, false, false); } environment local_abbreviation_cmd(parser & p) { return definition_cmd_core(p, LocalAbbreviation, true, false); } static environment theorem_cmd(parser & p) { return definition_cmd_core(p, Theorem, false, false); } static environment example_cmd(parser & p) { definition_cmd_core(p, Example, false, false); return p.env(); } static environment private_definition_cmd(parser & p) { def_cmd_kind kind = Definition; if (p.curr_is_token_or_id(get_definition_tk())) { p.next(); } else if (p.curr_is_token_or_id(get_abbreviation_tk())) { kind = Abbreviation; p.next(); } else if (p.curr_is_token_or_id(get_theorem_tk())) { p.next(); kind = Theorem; } else { throw parser_error("invalid 'private' definition/theorem, 'definition' or 'theorem' expected", p.pos()); } return definition_cmd_core(p, kind, true, false); } static environment protected_definition_cmd(parser & p) { if (p.curr_is_token_or_id(get_axiom_tk())) { p.next(); return variable_cmd_core(p, variable_kind::Axiom, true); } else if (p.curr_is_token_or_id(get_constant_tk())) { p.next(); return variable_cmd_core(p, variable_kind::Constant, true); } else if (p.curr_is_token_or_id(get_axioms_tk())) { p.next(); return variables_cmd_core(p, variable_kind::Axiom, true); } else if (p.curr_is_token_or_id(get_constants_tk())) { p.next(); return variables_cmd_core(p, variable_kind::Constant, true); } else { def_cmd_kind kind = Definition; if (p.curr_is_token_or_id(get_definition_tk())) { p.next(); } else if (p.curr_is_token_or_id(get_abbreviation_tk())) { p.next(); kind = Abbreviation; } else if (p.curr_is_token_or_id(get_theorem_tk())) { p.next(); kind = Theorem; } else { throw parser_error("invalid 'protected' definition/theorem, 'definition' or 'theorem' expected", p.pos()); } return definition_cmd_core(p, kind, false, true); } } static environment include_cmd_core(parser & p, bool include) { if (!p.curr_is_identifier()) throw parser_error(sstream() << "invalid include/omit command, identifier expected", p.pos()); while (p.curr_is_identifier()) { auto pos = p.pos(); name n = p.get_name_val(); p.next(); if (!p.get_local(n)) throw parser_error(sstream() << "invalid include/omit command, '" << n << "' is not a parameter/variable", pos); if (include) { if (p.is_include_variable(n)) throw parser_error(sstream() << "invalid include command, '" << n << "' has already been included", pos); p.include_variable(n); } else { if (!p.is_include_variable(n)) throw parser_error(sstream() << "invalid omit command, '" << n << "' has not been included", pos); p.omit_variable(n); } } return p.env(); } static environment include_cmd(parser & p) { return include_cmd_core(p, true); } static environment omit_cmd(parser & p) { return include_cmd_core(p, false); } static environment attribute_cmd_core(parser & p, bool persistent) { buffer ds; name d = p.check_constant_next("invalid 'attribute' command, constant expected"); ds.push_back(d); while (p.curr_is_identifier()) { ds.push_back(p.check_constant_next("invalid 'attribute' command, constant expected")); } bool abbrev = false; decl_attributes attributes(abbrev, persistent); attributes.parse(ds, p); environment env = p.env(); for (name const & d : ds) env = attributes.apply(env, p.ios(), d); return env; } static environment attribute_cmd(parser & p) { return attribute_cmd_core(p, true); } environment local_attribute_cmd(parser & p) { return attribute_cmd_core(p, false); } static environment reveal_cmd(parser & p) { buffer ds; name d = p.check_constant_next("invalid 'reveal' command, constant expected"); ds.push_back(d); while (p.curr_is_identifier()) { ds.push_back(p.check_constant_next("invalid 'reveal' command, constant expected")); } return p.reveal_theorems(ds); } void register_decl_cmds(cmd_table & r) { add_cmd(r, cmd_info("universe", "declare a universe level", universe_cmd)); add_cmd(r, cmd_info("universes", "declare universe levels", universes_cmd)); add_cmd(r, cmd_info("variable", "declare a new variable", variable_cmd)); add_cmd(r, cmd_info("parameter", "declare a new parameter", parameter_cmd)); add_cmd(r, cmd_info("constant", "declare a new constant (aka top-level variable)", constant_cmd)); add_cmd(r, cmd_info("axiom", "declare a new axiom", axiom_cmd)); add_cmd(r, cmd_info("variables", "declare new variables", variables_cmd)); add_cmd(r, cmd_info("parameters", "declare new parameters", parameters_cmd)); add_cmd(r, cmd_info("constants", "declare new constants (aka top-level variables)", constants_cmd)); add_cmd(r, cmd_info("axioms", "declare new axioms", axioms_cmd)); add_cmd(r, cmd_info("definition", "add new definition", definition_cmd)); add_cmd(r, cmd_info("example", "add new example", example_cmd)); add_cmd(r, cmd_info("private", "add new private definition/theorem", private_definition_cmd)); add_cmd(r, cmd_info("protected", "add new protected definition/theorem", protected_definition_cmd)); add_cmd(r, cmd_info("theorem", "add new theorem", theorem_cmd)); add_cmd(r, cmd_info("reveal", "reveal given theorems", reveal_cmd)); add_cmd(r, cmd_info("include", "force section parameter/variable to be included", include_cmd)); add_cmd(r, cmd_info("attribute", "set declaration attributes", attribute_cmd)); add_cmd(r, cmd_info("abbreviation", "declare a new abbreviation", abbreviation_cmd)); add_cmd(r, cmd_info("omit", "undo 'include' command", omit_cmd)); } void initialize_decl_cmds() { g_match_name = new name(name::mk_internal_unique_name(), "match"); } void finalize_decl_cmds() { delete g_match_name; } }