---------------------------------------------------------------------------------------------------- --- Copyright (c) 2014 Parikshit Khanna. All rights reserved. --- Released under Apache 2.0 license as described in the file LICENSE. --- Authors: Parikshit Khanna, Jeremy Avigad ---------------------------------------------------------------------------------------------------- -- Theory list -- =========== -- -- Basic properties of lists. import tools.tactic import data.nat import logic tools.helper_tactics open nat open eq.ops open helper_tactics inductive list (T : Type) : Type := nil {} : list T, cons : T → list T → list T namespace list infix `::` := cons section parameter {T : Type} protected theorem induction_on {P : list T → Prop} (l : list T) (Hnil : P nil) (Hind : ∀ (x : T) (l : list T), P l → P (x::l)) : P l := rec Hnil Hind l protected theorem cases_on {P : list T → Prop} (l : list T) (Hnil : P nil) (Hcons : ∀ (x : T) (l : list T), P (x::l)) : P l := induction_on l Hnil (take x l IH, Hcons x l) protected definition rec_on {A : Type} {C : list A → Type} (l : list A) (H1 : C nil) (H2 : Π (h : A) (t : list A), C t → C (h::t)) : C l := rec H1 H2 l notation `[` l:(foldr `,` (h t, h::t) nil) `]` := l -- Concat -- ------ definition append (s t : list T) : list T := rec t (λx l u, x::u) s infixl `++` : 65 := append theorem nil_append {t : list T} : nil ++ t = t theorem cons_append {x : T} {s t : list T} : x::s ++ t = x::(s ++ t) theorem append_nil {t : list T} : t ++ nil = t := induction_on t rfl (λx l H, H ▸ rfl) theorem append_assoc {s t u : list T} : s ++ t ++ u = s ++ (t ++ u) := induction_on s rfl (λx l H, H ▸ rfl) -- Length -- ------ definition length : list T → nat := rec 0 (λx l m, succ m) theorem length_nil : length (@nil T) = 0 theorem length_cons {x : T} {t : list T} : length (x::t) = succ (length t) theorem length_append {s t : list T} : length (s ++ t) = length s + length t := induction_on s (!add.zero_left⁻¹) (λx s H, !add.succ_left⁻¹ ▸ H ▸ rfl) -- add_rewrite length_nil length_cons -- Append -- ------ definition concat (x : T) : list T → list T := rec [x] (λy l l', y::l') theorem concat_nil {x : T} : concat x nil = [x] theorem concat_cons {x y : T} {l : list T} : concat x (y::l) = y::(concat x l) theorem concat_eq_append {x : T} {l : list T} : concat x l = l ++ [x] -- add_rewrite append_nil append_cons -- Reverse -- ------- definition reverse : list T → list T := rec nil (λx l r, r ++ [x]) theorem reverse_nil : reverse (@nil T) = nil theorem reverse_cons {x : T} {l : list T} : reverse (x::l) = concat x (reverse l) theorem reverse_singleton {x : T} : reverse [x] = [x] theorem reverse_append {s t : list T} : reverse (s ++ t) = (reverse t) ++ (reverse s) := induction_on s (append_nil⁻¹) (λx s H, calc reverse (x::s ++ t) = reverse t ++ reverse s ++ [x] : {H} ... = reverse t ++ (reverse s ++ [x]) : append_assoc) theorem reverse_reverse {l : list T} : reverse (reverse l) = l := induction_on l rfl (λx l' H, H ▸ reverse_append) theorem concat_eq_reverse_cons {x : T} {l : list T} : concat x l = reverse (x :: reverse l) := induction_on l rfl (λy l' H, calc concat x (y::l') = (y::l') ++ [x] : concat_eq_append ... = reverse (reverse (y::l')) ++ [x] : {reverse_reverse⁻¹}) -- Head and tail -- ------------- definition head (x : T) : list T → T := rec x (λx l h, x) theorem head_nil {x : T} : head x nil = x theorem head_cons {x x' : T} {t : list T} : head x' (x::t) = x theorem head_concat {s t : list T} {x : T} : s ≠ nil → (head x (s ++ t) = head x s) := cases_on s (take H : nil ≠ nil, absurd rfl H) (take x s, take H : x::s ≠ nil, calc head x (x::s ++ t) = head x (x::(s ++ t)) : {cons_append} ... = x : {head_cons} ... = head x (x::s) : {head_cons⁻¹}) definition tail : list T → list T := rec nil (λx l b, l) theorem tail_nil : tail (@nil T) = nil theorem tail_cons {x : T} {l : list T} : tail (x::l) = l theorem cons_head_tail {x : T} {l : list T} : l ≠ nil → (head x l)::(tail l) = l := cases_on l (assume H : nil ≠ nil, absurd rfl H) (take x l, assume H : x::l ≠ nil, rfl) -- List membership -- --------------- definition mem (x : T) : list T → Prop := rec false (λy l H, x = y ∨ H) infix `∈` := mem theorem mem_nil {x : T} : x ∈ nil ↔ false := iff.rfl theorem mem_cons {x y : T} {l : list T} : x ∈ y::l ↔ (x = y ∨ x ∈ l) := iff.rfl theorem mem_concat_imp_or {x : T} {s t : list T} : x ∈ s ++ t → x ∈ s ∨ x ∈ t := induction_on s or.inr (take y s, assume IH : x ∈ s ++ t → x ∈ s ∨ x ∈ t, assume H1 : x ∈ y::s ++ t, have H2 : x = y ∨ x ∈ s ++ t, from H1, have H3 : x = y ∨ x ∈ s ∨ x ∈ t, from or.imp_or_right H2 IH, iff.elim_right or.assoc H3) theorem mem_or_imp_concat {x : T} {s t : list T} : x ∈ s ∨ x ∈ t → x ∈ s ++ t := induction_on s (take H, or.elim H false_elim (assume H, H)) (take y s, assume IH : x ∈ s ∨ x ∈ t → x ∈ s ++ t, assume H : x ∈ y::s ∨ x ∈ t, or.elim H (assume H1, or.elim H1 (take H2 : x = y, or.inl H2) (take H2 : x ∈ s, or.inr (IH (or.inl H2)))) (assume H1 : x ∈ t, or.inr (IH (or.inr H1)))) theorem mem_concat {x : T} {s t : list T} : x ∈ s ++ t ↔ x ∈ s ∨ x ∈ t := iff.intro mem_concat_imp_or mem_or_imp_concat theorem mem_split {x : T} {l : list T} : x ∈ l → ∃s t : list T, l = s ++ (x::t) := induction_on l (take H : x ∈ nil, false_elim (iff.elim_left mem_nil H)) (take y l, assume IH : x ∈ l → ∃s t : list T, l = s ++ (x::t), assume H : x ∈ y::l, or.elim H (assume H1 : x = y, exists_intro nil (exists_intro l (H1 ▸ rfl))) (assume H1 : x ∈ l, obtain s (H2 : ∃t : list T, l = s ++ (x::t)), from IH H1, obtain t (H3 : l = s ++ (x::t)), from H2, have H4 : y :: l = (y::s) ++ (x::t), from H3 ▸ rfl, exists_intro _ (exists_intro _ H4))) definition mem_is_decidable [instance] {H : decidable_eq T} {x : T} {l : list T} : decidable (x ∈ l) := rec_on l (decidable.inr (iff.false_elim mem_nil)) (λ (h : T) (l : list T) (iH : decidable (x ∈ l)), show decidable (x ∈ h::l), from decidable.rec_on iH (assume Hp : x ∈ l, decidable.rec_on (H x h) (assume Heq : x = h, decidable.inl (or.inl Heq)) (assume Hne : x ≠ h, decidable.inl (or.inr Hp))) (assume Hn : ¬x ∈ l, decidable.rec_on (H x h) (assume Heq : x = h, decidable.inl (or.inl Heq)) (assume Hne : x ≠ h, have H1 : ¬(x = h ∨ x ∈ l), from assume H2 : x = h ∨ x ∈ l, or.elim H2 (assume Heq, absurd Heq Hne) (assume Hp, absurd Hp Hn), have H2 : ¬x ∈ h::l, from iff.elim_right (iff.flip_sign mem_cons) H1, decidable.inr H2))) -- Find -- ---- definition find {H : decidable_eq T} (x : T) : list T → nat := rec 0 (λy l b, if x = y then 0 else succ b) theorem find_nil {H : decidable_eq T} {f : T} : find f nil = 0 theorem find_cons {H : decidable_eq T} {x y : T} {l : list T} : find x (y::l) = if x = y then 0 else succ (find x l) theorem not_mem_find {H : decidable_eq T} {l : list T} {x : T} : ¬x ∈ l → find x l = length l := rec_on l (assume P₁ : ¬x ∈ nil, rfl) (take y l, assume iH : ¬x ∈ l → find x l = length l, assume P₁ : ¬x ∈ y::l, have P₂ : ¬(x = y ∨ x ∈ l), from iff.elim_right (iff.flip_sign mem_cons) P₁, have P₃ : ¬x = y ∧ ¬x ∈ l, from (iff.elim_left not_or P₂), calc find x (y::l) = if x = y then 0 else succ (find x l) : find_cons ... = succ (find x l) : if_neg (and.elim_left P₃) ... = succ (length l) : {iH (and.elim_right P₃)} ... = length (y::l) : length_cons⁻¹) -- nth element -- ----------- definition nth (x : T) (l : list T) (n : nat) : T := nat.rec (λl, head x l) (λm f l, f (tail l)) n l theorem nth_zero {x : T} {l : list T} : nth x l 0 = head x l theorem nth_succ {x : T} {l : list T} {n : nat} : nth x l (succ n) = nth x (tail l) n end end list