import algebra.category open category inductive my_functor {obC obD : Type} (C : category obC) (D : category obD) : Type := mk : Π (obF : obC → obD) (morF : Π{A B : obC}, mor A B → mor (obF A) (obF B)), (Π {A : obC}, morF (ID A) = ID (obF A)) → (Π {A B C : obC} {f : mor A B} {g : mor B C}, morF (g ∘ f) = morF g ∘ morF f) → my_functor C D definition my_object [coercion] {obC obD : Type} {C : category obC} {D : category obD} (F : my_functor C D) : obC → obD := my_functor.rec (λ obF morF Hid Hcomp, obF) F definition my_morphism [coercion] {obC obD : Type} {C : category obC} {D : category obD} (F : my_functor C D) : Π{A B : obC}, mor A B → mor (my_object F A) (my_object F B) := my_functor.rec (λ obF morF Hid Hcomp, morF) F constants obC obD : Type constants a b : obC constant C : category obC instance C constant D : category obD constant F : my_functor C D constant m : mor a b check F a check F m