import types.trunc hit.colimit homotopy.connectedness open eq is_trunc unit quotient seq_colim pi nat equiv sum algebra is_conn function /- In this file we define the propositional truncation, which, given (X : Type) has constructors * tr : X → trunc X * is_prop_trunc : is_prop (trunc X) and with a recursor which recurses to any family of mere propositions. The construction uses a "one step truncation" of X, with two constructors: * tr : X → one_step_tr X * tr_eq : Π(a b : X), tr a = tr b This is like a truncation, but taking out the recursive part. Martin Escardo calls this construction the generalized circle, since the one step truncation of the unit type is the circle. Then we can repeat this n times: A 0 = X, A (n + 1) = one_step_tr (A n) We have a map f {n : ℕ} : A n → A (n + 1) := tr Then trunc is defined as the sequential colimit of (A, f). Both the one step truncation and the sequential colimit can be defined as a quotient, which is a primitive HIT in Lean. Here, with a quotient, we mean the following HIT: Given {X : Type} (R : X → X → Type) we have the constructors * class_of : X → quotient R * eq_of_rel : Π{a a' : X}, R a a' → a = a' See the comment below for a sketch of the proof that (trunc A) is actually a mere proposition. -/ /- definition of "one step truncation" in terms of quotients -/ namespace one_step_tr section parameters {A : Type} variables (a a' : A) protected definition R (a a' : A) : Type₀ := unit parameter (A) definition one_step_tr : Type := quotient R parameter {A} definition tr : one_step_tr := class_of R a definition tr_eq : tr a = tr a' := eq_of_rel _ star protected definition rec {P : one_step_tr → Type} (Pt : Π(a : A), P (tr a)) (Pe : Π(a a' : A), Pt a =[tr_eq a a'] Pt a') (x : one_step_tr) : P x := begin fapply (quotient.rec_on x), { intro a, apply Pt}, { intro a a' H, cases H, apply Pe} end protected definition rec_on [reducible] {P : one_step_tr → Type} (x : one_step_tr) (Pt : Π(a : A), P (tr a)) (Pe : Π(a a' : A), Pt a =[tr_eq a a'] Pt a') : P x := rec Pt Pe x protected definition elim {P : Type} (Pt : A → P) (Pe : Π(a a' : A), Pt a = Pt a') (x : one_step_tr) : P := rec Pt (λa a', pathover_of_eq _ (Pe a a')) x protected definition elim_on [reducible] {P : Type} (x : one_step_tr) (Pt : A → P) (Pe : Π(a a' : A), Pt a = Pt a') : P := elim Pt Pe x theorem rec_tr_eq {P : one_step_tr → Type} (Pt : Π(a : A), P (tr a)) (Pe : Π(a a' : A), Pt a =[tr_eq a a'] Pt a') (a a' : A) : apd (rec Pt Pe) (tr_eq a a') = Pe a a' := !rec_eq_of_rel theorem elim_tr_eq {P : Type} (Pt : A → P) (Pe : Π(a a' : A), Pt a = Pt a') (a a' : A) : ap (elim Pt Pe) (tr_eq a a') = Pe a a' := begin apply eq_of_fn_eq_fn_inv !(pathover_constant (tr_eq a a')), rewrite [▸*,-apd_eq_pathover_of_eq_ap,↑elim,rec_tr_eq], end end definition n_step_tr [reducible] (A : Type) (n : ℕ) : Type := nat.rec_on n A (λn' A', one_step_tr A') end one_step_tr attribute one_step_tr.rec one_step_tr.elim [recursor 5] [unfold 5] attribute one_step_tr.rec_on one_step_tr.elim_on [unfold 2] attribute one_step_tr.tr [constructor] namespace one_step_tr /- Theorems about the one-step truncation -/ open homotopy trunc prod theorem tr_eq_ne_idp {A : Type} (a : A) : tr_eq a a ≠ idp := begin intro p, have H2 : Π{X : Type₁} {x : X} {q : x = x}, q = idp, from λX x q, calc q = ap (one_step_tr.elim (λa, x) (λa b, q)) (tr_eq a a) : elim_tr_eq ... = ap (one_step_tr.elim (λa, x) (λa b, q)) (refl (one_step_tr.tr a)) : by rewrite p ... = idp : idp, exact bool.eq_bnot_ne_idp H2 end theorem tr_eq_ne_ap_tr {A : Type} {a b : A} (p : a = b) : tr_eq a b ≠ ap tr p := by induction p; apply tr_eq_ne_idp theorem not_inhabited_set_trunc_one_step_tr (A : Type) : ¬(trunc 1 (one_step_tr A) × is_set (trunc 1 (one_step_tr A))) := begin intro H, induction H with x H, refine trunc.elim_on x _, clear x, intro x, induction x, { have q : trunc -1 ((tr_eq a a) = idp), begin refine to_fun !tr_eq_tr_equiv _, refine @is_prop.elim _ _ _ _, apply is_trunc_equiv_closed, apply tr_eq_tr_equiv end, refine trunc.elim_on q _, clear q, intro p, exact !tr_eq_ne_idp p}, { apply is_prop.elim} end theorem not_is_conn_one_step_tr (A : Type) : ¬is_conn 1 (one_step_tr A) := λH, not_inhabited_set_trunc_one_step_tr A (!center, _) theorem is_prop_trunc_one_step_tr (A : Type) : is_prop (trunc 0 (one_step_tr A)) := begin apply is_prop.mk, intro x y, refine trunc.rec_on x _, refine trunc.rec_on y _, clear x y, intro y x, induction x, { induction y, { exact ap trunc.tr !tr_eq}, { apply is_prop.elimo}}, { apply is_prop.elimo} end local attribute is_prop_trunc_one_step_tr [instance] theorem trunc_0_one_step_tr_equiv (A : Type) : trunc 0 (one_step_tr A) ≃ ∥ A ∥ := begin apply equiv_of_is_prop, { intro x, refine trunc.rec _ x, clear x, intro x, induction x, { exact trunc.tr a}, { apply is_prop.elim}}, { intro x, refine trunc.rec _ x, clear x, intro a, exact trunc.tr (tr a)}, end definition one_step_tr_functor [unfold 4] {A B : Type} (f : A → B) (x : one_step_tr A) : one_step_tr B := begin induction x, { exact tr (f a)}, { apply tr_eq} end definition one_step_tr_universal_property [constructor] (A B : Type) : (one_step_tr A → B) ≃ Σ(f : A → B), Π(x y : A), f x = f y := begin fapply equiv.MK, { intro f, fconstructor, intro a, exact f (tr a), intros, exact ap f !tr_eq}, { intro v a, induction v with f p, induction a, exact f a, apply p}, { intro v, induction v with f p, esimp, apply ap (sigma.mk _), apply eq_of_homotopy2, intro a a', apply elim_tr_eq}, { intro f, esimp, apply eq_of_homotopy, intro a, induction a, reflexivity, apply eq_pathover, apply hdeg_square, rewrite [▸*,elim_tr_eq]}, end end one_step_tr open one_step_tr namespace prop_trunc namespace hide section parameter {X : Type} /- basic constructors -/ definition A [reducible] (n : ℕ) : Type := nat.rec_on n X (λn' X', one_step_tr X') definition f [reducible] ⦃n : ℕ⦄ (a : A n) : A (succ n) := tr a definition f_eq [reducible] {n : ℕ} (a a' : A n) : f a = f a' := tr_eq a a' definition truncX [reducible] : Type := @seq_colim A f definition i [reducible] {n : ℕ} (a : A n) : truncX := inclusion f a definition g [reducible] {n : ℕ} (a : A n) : i (f a) = i a := glue f a /- defining the normal recursor is easy -/ definition rec {P : truncX → Type} [Pt : Πx, is_prop (P x)] (H : Π(a : X), P (@i 0 a)) (x : truncX) : P x := begin induction x, { induction n with n IH, { exact H a}, { induction a, { exact !g⁻¹ ▸ IH a}, { apply is_prop.elimo}}}, { apply is_prop.elimo} end /- The main effort is to prove that truncX is a mere proposition. We prove Π(a b : truncX), a = b first by induction on a, using the induction principle we just proven and then by induction on b On the point level we need to construct (1) a : A n, b : A m ⊢ p a b : i a = i b On the path level (for the induction on b) we need to show that (2) a : A n, b : A m ⊢ p a (f b) ⬝ g b = p a b The path level for a is automatic, since (Πb, a = b) is a mere proposition Thanks to Egbert Rijke for pointing this out For (1) we distinguish the cases n ≤ m and n ≥ m, and we prove that the two constructions coincide for n = m For (2) we distinguish the cases n ≤ m and n > m During the proof we heavily use induction on inequalities. (n ≤ m), or (le n m), is defined as an inductive family: inductive le (n : ℕ) : ℕ → Type₀ := | refl : le n n | step : Π {m}, le n m → le n (succ m) -/ /- point operations -/ definition fr [reducible] [unfold 2] (n : ℕ) (a : X) : A n := begin induction n with n x, { exact a}, { exact f x}, end /- path operations -/ definition i_fr [unfold 2] (n : ℕ) (a : X) : i (fr n a) = @i 0 a := begin induction n with n p, { reflexivity}, { exact g (fr n a) ⬝ p}, end definition eq_same {n : ℕ} (a a' : A n) : i a = i a' := calc i a = i (f a) : g ... = i (f a') : ap i (f_eq a a') ... = i a' : g definition eq_constructors {n : ℕ} (a : X) (b : A n) : @i 0 a = i b := calc i a = i (fr n a) : i_fr ... = i b : eq_same /- 2-dimensional path operations -/ theorem ap_i_ap_f {n : ℕ} {a a' : A n} (p : a = a') : !g⁻¹ ⬝ ap i (ap !f p) ⬝ !g = ap i p := by induction p; apply con.left_inv theorem ap_i_eq_ap_i_same {n : ℕ} {a a' : A n} (p q : a = a') : ap i p = ap i q := @(is_weakly_constant_ap i) eq_same a a' p q theorem ap_f_eq_f {n : ℕ} (a a' : A n) : !g⁻¹ ⬝ ap i (f_eq (f a) (f a')) ⬝ !g = ap i (f_eq a a') := ap _ !ap_i_eq_ap_i_same ⬝ !ap_i_ap_f theorem eq_same_f {n : ℕ} (a a' : A n) : (g a)⁻¹ ⬝ eq_same (f a) (f a') ⬝ g a' = eq_same a a' := begin esimp [eq_same], apply (ap (λx, _ ⬝ x ⬝ _)), apply (ap_f_eq_f a a'), end theorem eq_constructors_comp {n : ℕ} (a : X) (b : A n) : eq_constructors a (f b) ⬝ g b = eq_constructors a b := begin rewrite [↑eq_constructors,▸*,↓fr n a,↓i_fr n a,con_inv,+con.assoc], apply ap (λx, _ ⬝ x), rewrite -con.assoc, exact !eq_same_f end theorem is_prop_truncX : is_prop truncX := begin apply is_prop_of_imp_is_contr, intro a, refine @rec _ _ _ a, clear a, intro a, fapply is_contr.mk, exact @i 0 a, intro b, induction b with n b n b, { apply eq_constructors}, { apply (equiv.to_inv !eq_pathover_equiv_r), apply eq_constructors_comp} end end end hide end prop_trunc namespace prop_trunc open hide definition ptrunc.{u} (A : Type.{u}) : Type.{u} := @truncX A definition ptr {A : Type} : A → ptrunc A := @i A 0 definition is_prop_trunc (A : Type) : is_prop (ptrunc A) := is_prop_truncX protected definition ptrunc.rec {A : Type} {P : ptrunc A → Type} [Pt : Π(x : ptrunc A), is_prop (P x)] (H : Π(a : A), P (ptr a)) : Π(x : ptrunc A), P x := @rec A P Pt H example {A : Type} {P : ptrunc A → Type} [Pt : Πaa, is_prop (P aa)] (H : Πa, P (ptr a)) (a : A) : (ptrunc.rec H) (ptr a) = H a := by reflexivity open sigma prod -- the constructed truncation is equivalent to the "standard" propositional truncation -- (called _root_.trunc -1 below) open trunc attribute is_prop_trunc [instance] definition ptrunc_equiv_trunc (A : Type) : ptrunc A ≃ trunc -1 A := begin fapply equiv.MK, { intro x, induction x using ptrunc.rec with a, exact tr a}, { intro x, refine trunc.rec _ x, intro a, exact ptr a}, { intro x, induction x with a, reflexivity}, { intro x, induction x using ptrunc.rec with a, reflexivity} end -- some other recursors we get from this construction: definition trunc.elim2 {A P : Type} (h : Π{n}, n_step_tr A n → P) (coh : Π(n : ℕ) (a : n_step_tr A n), h (f a) = h a) (x : ptrunc A) : P := begin induction x, { exact h a}, { apply coh} end definition trunc.rec2 {A : Type} {P : truncX → Type} (h : Π{n} (a : n_step_tr A n), P (i a)) (coh : Π(n : ℕ) (a : n_step_tr A n), h (f a) =[g a] h a) (x : ptrunc A) : P x := begin induction x, { exact h a}, { apply coh} end definition elim2_equiv [constructor] (A P : Type) : (ptrunc A → P) ≃ Σ(h : Π{n}, n_step_tr A n → P), Π(n : ℕ) (a : n_step_tr A n), @h (succ n) (one_step_tr.tr a) = h a := begin fapply equiv.MK, { intro h, fconstructor, { intro n a, refine h (i a)}, { intro n a, exact ap h (g a)}}, { intro x a, induction x with h p, induction a, exact h a, apply p}, { intro x, induction x with h p, fapply sigma_eq, { reflexivity}, { esimp, apply pathover_idp_of_eq, apply eq_of_homotopy2, intro n a, xrewrite elim_glue}}, { intro h, apply eq_of_homotopy, intro a, esimp, induction a, esimp, apply eq_pathover, apply hdeg_square, esimp, rewrite elim_glue} end open sigma.ops definition conditionally_constant_equiv {A P : Type} (k : A → P) : (Σ(g : ptrunc A → P), Πa, g (ptr a) = k a) ≃ Σ(h : Π{n}, n_step_tr A n → P), (Π(n : ℕ) (a : n_step_tr A n), h (f a) = h a) × (Πa, @h 0 a = k a) := calc (Σ(g : ptrunc A → P), Πa, g (ptr a) = k a) ≃ Σ(v : Σ(h : Π{n}, n_step_tr A n → P), Π(n : ℕ) (a : n_step_tr A n), h (f a) = h a), Πa, (v.1) 0 a = k a : sigma_equiv_sigma !elim2_equiv (λg, equiv.rfl) ... ≃ Σ(h : Π{n}, n_step_tr A n → P) (p : Π(n : ℕ) (a : n_step_tr A n), h (f a) = h a), Πa, @h 0 a = k a : sigma_assoc_equiv ... ≃ Σ(h : Π{n}, n_step_tr A n → P), (Π(n : ℕ) (a : n_step_tr A n), h (f a) = h a) × (Πa, @h 0 a = k a) : sigma_equiv_sigma_right (λa, !equiv_prod) definition cocone_of_is_collapsible {A : Type} (f : A → A) (p : Πa a', f a = f a') (n : ℕ) (x : n_step_tr A n) : A := begin apply f, induction n with n h, { exact x}, { apply to_inv !one_step_tr_universal_property ⟨f, p⟩, exact one_step_tr_functor h x} end definition has_split_support_of_is_collapsible {A : Type} (f : A → A) (p : Πa a', f a = f a') : ptrunc A → A := begin fapply to_inv !elim2_equiv, fconstructor, { exact cocone_of_is_collapsible f p}, { intro n a, apply p} end end prop_trunc open prop_trunc trunc -- Corollaries for the actual truncation. namespace is_trunc local attribute is_prop_trunc_one_step_tr [instance] definition prop_trunc.elim_set [unfold 6] {A : Type} {P : Type} [is_set P] (f : A → P) (p : Πa a', f a = f a') (x : trunc -1 A) : P := begin have y : trunc 0 (one_step_tr A), by induction x; exact trunc.tr (one_step_tr.tr a), induction y with y, induction y, { exact f a}, { exact p a a'} end definition prop_trunc.elim_set_tr {A : Type} {P : Type} {H : is_set P} (f : A → P) (p : Πa a', f a = f a') (a : A) : prop_trunc.elim_set f p (tr a) = f a := by reflexivity open sigma local attribute prop_trunc.elim_set [recursor 6] definition total_image.elim_set [unfold 8] {A B : Type} {f : A → B} {C : Type} [is_set C] (g : A → C) (h : Πa a', f a = f a' → g a = g a') (x : total_image f) : C := begin induction x with b v, induction v using prop_trunc.elim_set with x x x', { induction x with a p, exact g a }, { induction x with a p, induction x' with a' p', induction p', exact h _ _ p } end definition total_image.rec [unfold 7] {A B : Type} {f : A → B} {C : total_image f → Type} [H : Πx, is_prop (C x)] (g : Πa, C ⟨f a, image.mk a idp⟩) (x : total_image f) : C x := begin induction x with b v, refine @image.rec _ _ _ _ _ (λv, H ⟨b, v⟩) _ v, intro a p, induction p, exact g a end end is_trunc