/- Copyright (c) 2016 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer, Ulrik Buchholtz The Wedge Sum of Two Pointed Types -/ import hit.pushout .connectedness types.unit open eq pushout pointed unit trunc_index definition wedge (A B : Type*) : Type := ppushout (pconst punit A) (pconst punit B) local attribute wedge [reducible] definition pwedge [constructor] (A B : Type*) : Type* := pointed.mk' (wedge A B) infixr ` ∨ ` := pwedge namespace wedge protected definition glue {A B : Type*} : inl pt = inr pt :> wedge A B := pushout.glue ⋆ protected definition rec {A B : Type*} {P : wedge A B → Type} (Pinl : Π(x : A), P (inl x)) (Pinr : Π(x : B), P (inr x)) (Pglue : pathover P (Pinl pt) wedge.glue (Pinr pt)) (y : wedge A B) : P y := by induction y; apply Pinl; apply Pinr; induction x; exact Pglue protected definition elim {A B : Type*} {P : Type} (Pinl : A → P) (Pinr : B → P) (Pglue : Pinl pt = Pinr pt) (y : wedge A B) : P := by induction y with a b x; exact Pinl a; exact Pinr b; induction x; exact Pglue protected definition rec_glue {A B : Type*} {P : wedge A B → Type} (Pinl : Π(x : A), P (inl x)) (Pinr : Π(x : B), P (inr x)) (Pglue : pathover P (Pinl pt) wedge.glue (Pinr pt)) : apd (wedge.rec Pinl Pinr Pglue) wedge.glue = Pglue := !pushout.rec_glue protected definition elim_glue {A B : Type*} {P : Type} (Pinl : A → P) (Pinr : B → P) (Pglue : Pinl pt = Pinr pt) : ap (wedge.elim Pinl Pinr Pglue) wedge.glue = Pglue := !pushout.elim_glue end wedge attribute wedge.rec wedge.elim [recursor 7] [unfold 7] namespace wedge -- TODO maybe find a cleaner proof protected definition unit (A : Type*) : A ≃* pwedge punit A := begin fapply pequiv_of_pmap, { fapply pmap.mk, intro a, apply pinr a, apply respect_pt }, { fapply is_equiv.adjointify, intro x, fapply pushout.elim_on x, exact λ x, Point A, exact id, intro u, reflexivity, intro x, fapply pushout.rec_on x, intro u, cases u, esimp, apply wedge.glue⁻¹, intro a, reflexivity, intro u, cases u, esimp, apply eq_pathover, refine _ ⬝hp !ap_id⁻¹, fapply eq_hconcat, apply ap_compose inr, krewrite elim_glue, fapply eq_hconcat, apply ap_idp, apply square_of_eq, apply con.left_inv, intro a, reflexivity}, end end wedge open trunc is_trunc is_conn function namespace wedge_extension section -- The wedge connectivity lemma (Lemma 8.6.2) parameters {A B : Type*} (n m : ℕ) [cA : is_conn n A] [cB : is_conn m B] (P : A → B → Type) [HP : Πa b, is_trunc (m + n) (P a b)] (f : Πa : A, P a pt) (g : Πb : B, P pt b) (p : f pt = g pt) include cA cB HP private definition Q (a : A) : Type := fiber (λs : (Πb : B, P a b), s (Point B)) (f a) private definition is_trunc_Q (a : A) : is_trunc (n.-1) (Q a) := begin refine @is_conn.elim_general (m.-1) _ _ _ (P a) _ (f a), rewrite [-succ_add_succ, of_nat_add_of_nat], intro b, apply HP end local attribute is_trunc_Q [instance] private definition Q_sec : Πa : A, Q a := is_conn.elim (n.-1) Q (fiber.mk g p⁻¹) protected definition ext : Π(a : A)(b : B), P a b := λa, fiber.point (Q_sec a) protected definition β_left (a : A) : ext a (Point B) = f a := fiber.point_eq (Q_sec a) private definition coh_aux : Σq : ext (Point A) = g, β_left (Point A) = ap (λs : (Πb : B, P (Point A) b), s (Point B)) q ⬝ p⁻¹ := equiv.to_fun (fiber.fiber_eq_equiv (Q_sec (Point A)) (fiber.mk g p⁻¹)) (is_conn.elim_β (n.-1) Q (fiber.mk g p⁻¹)) protected definition β_right (b : B) : ext (Point A) b = g b := apd10 (sigma.pr1 coh_aux) b private definition lem : β_left (Point A) = β_right (Point B) ⬝ p⁻¹ := begin unfold β_right, unfold β_left, krewrite (apd10_eq_ap_eval (sigma.pr1 coh_aux) (Point B)), exact sigma.pr2 coh_aux, end protected definition coh : (β_left (Point A))⁻¹ ⬝ β_right (Point B) = p := by rewrite [lem,con_inv,inv_inv,con.assoc,con.left_inv] end end wedge_extension