inductive fibrant [class] (T : Type) : Type := fibrant_mk : fibrant T inductive path {A : Type'} [fA : fibrant A] (a : A) : A → Type := idpath : path a a notation a ≈ b := path a b axiom path_fibrant {A : Type'} [fA : fibrant A] (a b : A) : fibrant (path a b) persistent attribute path_fibrant [instance] axiom imp_fibrant {A : Type'} {B : Type'} [C1 : fibrant A] [C2 : fibrant B] : fibrant (A → B) attribute imp_fibrant [instance] definition test {A : Type} [fA : fibrant A] {x y : A} : Π (z : A), y ≈ z → fibrant (x ≈ y → x ≈ z) := _