inductive fibrant [class] (T : Type) : Type := fibrant_mk : fibrant T axiom pi_fibrant {A : Type} {B : A → Type} [C1 : fibrant A] [C2 : Πx : A, fibrant (B x)] : fibrant (Πx : A, B x) attribute pi_fibrant [instance] inductive path {A : Type} [fA : fibrant A] (a : A) : A → Type := idpath : path a a axiom path_fibrant {A : Type} [fA : fibrant A] (a b : A) : fibrant (path a b) persistent attribute path_fibrant [instance] notation a ≈ b := path a b definition test {A : Type} [fA : fibrant A] {x y : A} : Π (z : A), y ≈ z → fibrant (x ≈ y → x ≈ z) := take z p, _ definition test2 {A : Type} [fA : fibrant A] {x y : A} : Π (z : A), y ≈ z → fibrant (x ≈ y → x ≈ z) := _ definition test3 {A : Type} [fA : fibrant A] {x y : A} : Π (z : A), y ≈ z → fibrant (x ≈ z) := _ definition test4 {A : Type} [fA : fibrant A] {x y z : A} : fibrant (x ≈ y → x ≈ z) := _ axiom imp_fibrant {A : Type} {B : Type} [C1 : fibrant A] [C2 : fibrant B] : fibrant (A → B) attribute imp_fibrant [instance] definition test5 {A : Type} [fA : fibrant A] {x y : A} : Π (z : A), y ≈ z → fibrant (x ≈ y → x ≈ z) := _