open eq is_trunc structure is_retraction [class] {A B : Type} (f : A → B) := (sect : B → A) (right_inverse : Π(b : B), f (sect b) = b) definition foo {A : Type} {B : Type} (f : A → B) (g : B → A) (ε : Πb, f (g b) = b) (b b' : B) : is_retraction (λ (q : g b = g b'), (ε b) ⁻¹ ⬝ ap f q ⬝ ε b') := begin fapply is_retraction.mk, {exact (@ap B A g b b') }, {intro p, cases p, esimp {eq.ap, eq.rec_on, eq.idp} } end