/* Copyright (c) 2013 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura */ #include #include "normalize.h" #include "trace.h" #include "test.h" #include "sets.h" using namespace lean; static void eval(expr const & e) { std::cout << e << " --> " << normalize(e) << "\n"; } static expr t() { return constant("t"); } static expr lam(expr const & e) { return lambda("_", t(), e); } static expr lam(expr const & t, expr const & e) { return lambda("_", t, e); } static expr v(unsigned i) { return var(i); } static expr arrow(expr const & d, expr const & r) { return pi("_", d, r); } static expr zero() { // fun (t : T) (s : t -> t) (z : t) z return lam(t(), lam(arrow(v(0), v(0)), lam(v(1), v(0)))); } static expr one() { // fun (t : T) (s : t -> t) s return lam(t(), lam(arrow(v(0), v(0)), v(0))); } static expr num() { return constant("num"); } static expr plus() { // fun (m n : numeral) (A : Type 0) (f : A -> A) (x : A) => m A f (n A f x). expr x = v(0), f = v(1), A = v(2), n = v(3), m = v(4); expr body = m(A, f, n(A, f, x)); return lam(num(), lam(num(), lam(t(), lam(arrow(v(0), v(0)), lam(v(1), body))))); } static expr two() { return app(plus(), one(), one()); } static expr three() { return app(plus(), two(), one()); } static expr four() { return app(plus(), two(), two()); } static expr times() { // fun (m n : numeral) (A : Type 0) (f : A -> A) (x : A) => m A (n A f) x. expr x = v(0), f = v(1), A = v(2), n = v(3), m = v(4); expr body = m(A, n(A, f), x); return lam(num(), lam(num(), lam(t(), lam(arrow(v(0), v(0)), lam(v(1), body))))); } static expr power() { // fun (m n : numeral) (A : Type 0) => m (A -> A) (n A). expr A = v(0), n = v(1), m = v(2); expr body = n(arrow(A, A), m(A)); return lam(num(), lam(num(), lam(arrow(v(0), v(0)), body))); } unsigned count_core(expr const & a, expr_set & s) { if (s.find(a) != s.end()) return 0; s.insert(a); switch (a.kind()) { case expr_kind::Var: case expr_kind::Constant: case expr_kind::Prop: case expr_kind::Type: case expr_kind::Numeral: return 1; case expr_kind::App: return std::accumulate(begin_args(a), end_args(a), 1, [&](unsigned sum, expr const & arg){ return sum + count_core(arg, s); }); case expr_kind::Lambda: case expr_kind::Pi: return count_core(abst_type(a), s) + count_core(abst_body(a), s) + 1; } return 0; } unsigned count(expr const & a) { expr_set s; return count_core(a, s); } static void tst_church_numbers() { expr N = constant("N"); expr z = constant("z"); expr s = constant("s"); std::cout << normalize(app(zero(), N, s, z)) << "\n"; std::cout << normalize(app(one(), N, s, z)) << "\n"; std::cout << normalize(app(two(), N, s, z)) << "\n"; std::cout << normalize(app(four(), N, s, z)) << "\n"; std::cout << count(normalize(app(four(), N, s, z))) << "\n"; lean_assert(count(normalize(app(four(), N, s, z))) == 4 + 2); std::cout << normalize(app(app(times(), four(), four()), N, s, z)) << "\n"; std::cout << normalize(app(app(power(), two(), four()), N, s, z)) << "\n"; lean_assert(count(normalize(app(app(power(), two(), four()), N, s, z))) == 16 + 2); std::cout << normalize(app(app(times(), two(), app(power(), two(), four())), N, s, z)) << "\n"; std::cout << count(normalize(app(app(times(), two(), app(power(), two(), four())), N, s, z))) << "\n"; std::cout << count(normalize(app(app(times(), four(), app(power(), two(), four())), N, s, z))) << "\n"; lean_assert(count(normalize(app(app(times(), four(), app(power(), two(), four())), N, s, z))) == 64 + 2); expr big = normalize(app(app(power(), two(), app(power(), two(), three())), N, s, z)); std::cout << count(big) << "\n"; lean_assert(count(big) == 256 + 2); // expr three = app(plus(), two(), one()); // lean_assert(count(normalize(app(app(power(), three, three), N, s, z))) == 27 + 2); // expr big = normalize(app(app(power(), two(), app(times(), app(plus(), four(), one()), four())), N, s, z)); // std::cout << count(big) << "\n"; std::cout << normalize(lam(lam(app(app(times(), four(), four()), N, var(0), z)))) << "\n"; } static void tst1() { expr f = constant("f"); expr a = constant("a"); expr b = constant("b"); expr x = var(0); expr y = var(1); expr t = prop(); eval(app(lambda("x", t, x), a)); eval(app(lambda("x", t, x), a, b)); eval(lambda("x", t, f(x))); eval(lambda("y", t, lambda("x", t, f(y, x)))); eval(app(lambda("x", t, app(lambda("f", t, app(var(0), b)), lambda("g", t, f(var(1))))), a)); expr l01 = lam(v(0)(v(1))); expr l12 = lam(lam(v(1)(v(2)))); eval(lam(l12(l01))); lean_assert(normalize(lam(l12(l01))) == lam(lam(v(1)(v(1))))); } int main() { continue_on_violation(true); tst1(); tst_church_numbers(); return has_violations() ? 1 : 0; }