/- Copyright (c) 2014 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: data.int.div Author: Jeremy Avigad Definitions and properties of div, mod, gcd, lcm, coprime. Following the SSReflect library (and the SMT lib standard), we define a mod b so that 0 ≤ a mod b < |b| when b ≠ 0. -/ import data.int.order data.nat.div open [coercions] [reduce-hints] nat open [declarations] nat (succ) open eq.ops notation `ℕ` := nat set_option pp.beta true namespace int /- definitions -/ definition divide (a b : ℤ) : ℤ := sign b * (match a with | of_nat m := #nat m div (nat_abs b) | -[ m +1] := -[ (#nat m div (nat_abs b)) +1] end) notation a div b := divide a b definition modulo (a b : ℤ) : ℤ := a - a div b * b notation a mod b := modulo a b /- div -/ theorem of_nat_div_of_nat (m n : nat) : m div n = of_nat (#nat m div n) := nat.cases_on n (by rewrite [↑divide, sign_zero, zero_mul, nat.div_zero]) (take n, by rewrite [↑divide, sign_of_succ, one_mul]) theorem neg_succ_of_nat_div (m : nat) {b : ℤ} (H : b > 0) : -[m +1] div b = -(m div b + 1) := calc -[m +1] div b = sign b * _ : rfl ... = -[(#nat m div (nat_abs b)) +1] : by rewrite [sign_of_pos H, one_mul] ... = -(m div b + 1) : by rewrite [↑divide, sign_of_pos H, one_mul] theorem div_neg (a b : ℤ) : a div -b = -(a div b) := calc a div -b = sign (-b) * _ : rfl ... = -(sign b) * _ : sign_neg ... = -(sign b * _) : neg_mul_eq_neg_mul ... = -(sign b * _) : nat_abs_neg ... = -(a div b) : rfl theorem zero_div (b : ℤ) : 0 div b = 0 := calc 0 div b = sign b * (#nat 0 div (nat_abs b)) : rfl ... = sign b * 0 : nat.zero_div ... = 0 : mul_zero theorem div_zero (a : ℤ) : a div 0 = 0 := by rewrite [↑divide, sign_zero, zero_mul] theorem eq_div_mul_add_mod {a b : ℤ} : a = a div b * b + a mod b := !add.comm ▸ eq_add_of_sub_eq rfl /- mod -/ theorem of_nat_mod_of_nat (m n : nat) : m mod n = (#nat m mod n) := have H : m = (#nat m mod n) + m div n * n, from calc m = of_nat (#nat m div n * n + m mod n) : nat.eq_div_mul_add_mod ... = (#nat m div n) * n + (#nat m mod n) : rfl ... = m div n * n + (#nat m mod n) : of_nat_div_of_nat ... = (#nat m mod n) + m div n * n : add.comm, calc m mod n = m - m div n * n : rfl ... = (#nat m mod n) : sub_eq_of_eq_add H theorem neg_succ_of_nat_mod (m : ℕ) {b : ℤ} (bpos : b > 0) : -[m +1] mod b = b - 1 - m mod b := calc -[m +1] mod b = -(m + 1) - -[m +1] div b * b : rfl ... = -(m + 1) - -(m div b + 1) * b : neg_succ_of_nat_div _ bpos ... = -m + -1 + (b + m div b * b) : by rewrite [neg_add, -neg_mul_eq_neg_mul, sub_neg_eq_add, mul.right_distrib, one_mul, (add.comm b)] ... = b + -1 + (-m + m div b * b) : by rewrite [-*add.assoc, add.comm (-m), add.right_comm (-1), (add.comm b)] ... = b - 1 - m mod b : by rewrite [↑modulo, *sub_eq_add_neg, neg_add, neg_neg] theorem mod_neg (a b : ℤ) : a mod -b = a mod b := calc a mod -b = a - (a div -b) * -b : rfl ... = a - -(a div b) * -b : div_neg ... = a - a div b * b : neg_mul_neg ... = a mod b : rfl theorem mod_abs (a b : ℤ) : a mod (abs b) = a mod b := abs.by_cases rfl !mod_neg theorem zero_mod (b : ℤ) : 0 mod b = 0 := by rewrite [↑modulo, zero_div, zero_mul, sub_zero] theorem mod_zero (a : ℤ) : a mod 0 = a := by rewrite [↑modulo, mul_zero, sub_zero] private lemma of_nat_mod_abs (m : ℕ) (b : ℤ) : m mod (abs b) = (#nat m mod (nat_abs b)) := calc m mod (abs b) = m mod (nat_abs b) : of_nat_nat_abs ... = (#nat m mod (nat_abs b)) : of_nat_mod_of_nat private lemma of_nat_mod_abs_lt (m : ℕ) {b : ℤ} (H : b ≠ 0) : m mod (abs b) < (abs b) := have H1 : abs b > 0, from abs_pos_of_ne_zero H, have H2 : (#nat nat_abs b > 0), from lt_of_of_nat_lt_of_nat (!of_nat_nat_abs⁻¹ ▸ H1), calc m mod (abs b) = (#nat m mod (nat_abs b)) : of_nat_mod_abs m b ... < nat_abs b : of_nat_lt_of_nat (nat.mod_lt H2) ... = abs b : of_nat_nat_abs _ theorem mod_nonneg (a : ℤ) {b : ℤ} (H : b ≠ 0) : a mod b ≥ 0 := have H1 : abs b > 0, from abs_pos_of_ne_zero H, have H2 : a mod (abs b) ≥ 0, from int.cases_on a (take m, (of_nat_mod_abs m b)⁻¹ ▸ !of_nat_nonneg) (take m, have H3 : 1 + m mod (abs b) ≤ (abs b), from (!add.comm ▸ add_one_le_of_lt (of_nat_mod_abs_lt m H)), calc -[ m +1] mod (abs b) = abs b - 1 - m mod (abs b) : neg_succ_of_nat_mod _ H1 ... = abs b - (1 + m mod (abs b)) : by rewrite [*sub_eq_add_neg, neg_add, add.assoc] ... ≥ 0 : iff.mp' !sub_nonneg_iff_le H3), !mod_abs ▸ H2 theorem mod_lt (a : ℤ) {b : ℤ} (H : b ≠ 0) : a mod b < (abs b) := have H1 : abs b > 0, from abs_pos_of_ne_zero H, have H2 : a mod (abs b) < abs b, from int.cases_on a (take m, of_nat_mod_abs_lt m H) (take m, have H3 : abs b ≠ 0, from assume H', H (eq_zero_of_abs_eq_zero H'), have H4 : 1 + m mod (abs b) > 0, from add_pos_of_pos_of_nonneg dec_trivial (mod_nonneg _ H3), calc -[ m +1] mod (abs b) = abs b - 1 - m mod (abs b) : neg_succ_of_nat_mod _ H1 ... = abs b - (1 + m mod (abs b)) : by rewrite [*sub_eq_add_neg, neg_add, add.assoc] ... < abs b : sub_lt_self _ H4), !mod_abs ▸ H2 /- both div and mod -/ private theorem add_mul_div_self_right_aux1 {a : ℤ} {k : ℕ} (n : ℕ) (H1 : a ≥ 0) (H2 : #nat k > 0) : (a + n * k) div k = a div k + n := obtain m (Hm : a = of_nat m), from exists_eq_of_nat H1, Hm⁻¹ ▸ (calc (m + n * k) div k = (#nat (m + n * k)) div k : rfl ... = (#nat (m + n * k) div k) : of_nat_div_of_nat ... = (#nat m div k + n) : !nat.add_mul_div_self_right H2 ... = (#nat m div k) + n : rfl ... = m div k + n : of_nat_div_of_nat) private theorem add_mul_div_self_right_aux2 {a : ℤ} {k : ℕ} (n : ℕ) (H1 : a < 0) (H2 : #nat k > 0) : (a + n * k) div k = a div k + n := obtain m (Hm : a = -[m +1]), from exists_eq_neg_succ_of_nat H1, or.elim (nat.lt_or_ge m (#nat n * k)) (assume m_lt_nk : #nat m < n * k, have H3 : #nat (m + 1 ≤ n * k), from nat.succ_le_of_lt m_lt_nk, have H4 : #nat m div k + 1 ≤ n, from nat.succ_le_of_lt (nat.div_lt_of_lt_mul (!nat.mul.comm ▸ m_lt_nk)), Hm⁻¹ ▸ (calc (-[m +1] + n * k) div k = (n * k - (m + 1)) div k : by rewrite [add.comm, neg_succ_of_nat_eq] ... = ((#nat n * k) - (#nat m + 1)) div k : rfl ... = (#nat n * k - (m + 1)) div k : {of_nat_sub_of_nat H3} ... = #nat (n * k - (m + 1)) div k : of_nat_div_of_nat ... = #nat (k * n - (m + 1)) div k : nat.mul.comm ... = #nat n - m div k - 1 : nat.mul_sub_div_of_lt (!nat.mul.comm ▸ m_lt_nk) ... = #nat n - (m div k + 1) : nat.sub_sub ... = n - (#nat m div k + 1) : of_nat_sub_of_nat H4 ... = -(m div k + 1) + n : by rewrite [add.comm, -sub_eq_add_neg, -of_nat_add_of_nat, of_nat_div_of_nat] ... = -[m +1] div k + n : neg_succ_of_nat_div m (of_nat_lt_of_nat H2))) (assume nk_le_m : #nat n * k ≤ m, eq.symm (Hm⁻¹ ▸ (calc -[m +1] div k + n = -(m div k + 1) + n : neg_succ_of_nat_div m (of_nat_lt_of_nat H2) ... = -((#nat m div k) + 1) + n : of_nat_div_of_nat ... = -((#nat (m - n * k + n * k) div k) + 1) + n : nat.sub_add_cancel nk_le_m ... = -((#nat (m - n * k) div k + n) + 1) + n : nat.add_mul_div_self_right H2 ... = -((#nat m - n * k) div k + 1) : by rewrite [-of_nat_add_of_nat, *neg_add, add.right_comm, neg_add_cancel_right, of_nat_div_of_nat] ... = -[(#nat m - n * k) +1] div k : neg_succ_of_nat_div _ (of_nat_lt_of_nat H2) ... = -((#nat m - n * k) + 1) div k : rfl ... = -(m - (#nat n * k) + 1) div k : of_nat_sub_of_nat nk_le_m ... = (-(m + 1) + n * k) div k : by rewrite [sub_eq_add_neg, -*add.assoc, *neg_add, neg_neg, add.right_comm] ... = (-[m +1] + n * k) div k : rfl))) private theorem add_mul_div_self_right_aux3 (a : ℤ) {b c : ℤ} (H1 : b ≥ 0) (H2 : c > 0) : (a + b * c) div c = a div c + b := obtain n (Hn : b = of_nat n), from exists_eq_of_nat H1, obtain k (Hk : c = of_nat k), from exists_eq_of_nat (le_of_lt H2), have knz : k ≠ 0, from assume kz, !lt.irrefl (kz ▸ Hk ▸ H2), have kgt0 : (#nat k > 0), from nat.pos_of_ne_zero knz, have H3 : (a + n * k) div k = a div k + n, from or.elim (lt_or_ge a 0) (assume Ha : a < 0, add_mul_div_self_right_aux2 _ Ha kgt0) (assume Ha : a ≥ 0, add_mul_div_self_right_aux1 _ Ha kgt0), Hn⁻¹ ▸ Hk⁻¹ ▸ H3 private theorem add_mul_div_self_right_aux4 (a b : ℤ) {c : ℤ} (H : c > 0) : (a + b * c) div c = a div c + b := or.elim (le.total 0 b) (assume H1 : 0 ≤ b, add_mul_div_self_right_aux3 _ H1 H) (assume H1 : 0 ≥ b, eq.symm (calc a div c + b = (a + b * c + -b * c) div c + b : by rewrite [-neg_mul_eq_neg_mul, add_neg_cancel_right] ... = (a + b * c) div c + - b + b : add_mul_div_self_right_aux3 _ (neg_nonneg_of_nonpos H1) H ... = (a + b * c) div c : neg_add_cancel_right)) theorem add_mul_div_self_right (a b : ℤ) {c : ℤ} (H : c ≠ 0) : (a + b * c) div c = a div c + b := lt.by_cases (assume H1 : 0 < c, !add_mul_div_self_right_aux4 H1) (assume H1 : 0 = c, absurd H1⁻¹ H) (assume H1 : 0 > c, have H2 : -c > 0, from neg_pos_of_neg H1, calc (a + b * c) div c = - ((a + -b * -c) div -c) : by rewrite [div_neg, neg_mul_neg, neg_neg] ... = -(a div -c + -b) : !add_mul_div_self_right_aux4 H2 ... = a div c + b : by rewrite [div_neg, neg_add, *neg_neg]) end int