/- Copyright (c) 2014 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Floris van Doorn Ported from Coq HoTT Theorems about pi-types (dependent function spaces) -/ import types.sigma open eq equiv is_equiv funext namespace pi universe variables l k variables {A A' : Type.{l}} {B : A → Type.{k}} {C : Πa, B a → Type} {D : Πa b, C a b → Type} {a a' a'' : A} {b b₁ b₂ : B a} {b' : B a'} {b'' : B a''} {f g : Πa, B a} /- Paths -/ /- Paths [p : f ≈ g] in a function type [Πx:X, P x] are equivalent to functions taking values in path types, [H : Πx:X, f x ≈ g x], or concisely, [H : f ∼ g]. This equivalence, however, is just the combination of [apD10] and function extensionality [funext], and as such, [path_forall], et seq. are given in axioms.funext and path: -/ /- Now we show how these things compute. -/ definition apD10_path_pi [H : funext] (h : f ∼ g) : apD10 (path_pi h) ∼ h := apD10 (retr apD10 h) definition path_pi_eta [H : funext] (p : f = g) : path_pi (apD10 p) = p := sect apD10 p definition path_pi_idp [H : funext] : path_pi (λx : A, refl (f x)) = refl f := !path_pi_eta /- The identification of the path space of a dependent function space, up to equivalence, is of course just funext. -/ definition path_equiv_homotopy [H : funext] (f g : Πx, B x) : (f = g) ≃ (f ∼ g) := equiv.mk _ !funext.ap definition is_equiv_path_pi [instance] [H : funext] (f g : Πx, B x) : is_equiv (@path_pi _ _ _ f g) := inv_closed apD10 definition homotopy_equiv_path [H : funext] (f g : Πx, B x) : (f ∼ g) ≃ (f = g) := equiv.mk _ !is_equiv_path_pi /- Transport -/ protected definition transport (p : a = a') (f : Π(b : B a), C a b) : (transport (λa, Π(b : B a), C a b) p f) ∼ (λb, transport (C a') !transport_pV (transportD _ _ p _ (f (p⁻¹ ▹ b)))) := eq.rec_on p (λx, idp) /- A special case of [transport_pi] where the type [B] does not depend on [A], and so it is just a fixed type [B]. -/ definition transport_constant {C : A → A' → Type} (p : a = a') (f : Π(b : A'), C a b) : (eq.transport (λa, Π(b : A'), C a b) p f) ∼ (λb, eq.transport (λa, C a b) p (f b)) := eq.rec_on p (λx, idp) /- Maps on paths -/ /- The action of maps given by lambda. -/ definition ap_lambdaD [H : funext] {C : A' → Type} (p : a = a') (f : Πa b, C b) : ap (λa b, f a b) p = path_pi (λb, ap (λa, f a b) p) := begin apply (eq.rec_on p), apply inverse, apply path_pi_idp end /- Dependent paths -/ /- with more implicit arguments the conclusion of the following theorem is (Π(b : B a), transportD B C p b (f b) = g (eq.transport B p b)) ≃ (eq.transport (λa, Π(b : B a), C a b) p f = g) -/ definition dpath_pi [H : funext] (p : a = a') (f : Π(b : B a), C a b) (g : Π(b' : B a'), C a' b') : (Π(b : B a), p ▹D (f b) = g (p ▹ b)) ≃ (p ▹ f = g) := eq.rec_on p (λg, !homotopy_equiv_path) g section open sigma sigma.ops /- more implicit arguments: (Π(b : B a), eq.transport C (sigma.path p idp) (f b) = g (p ▹ b)) ≃ (Π(b : B a), transportD B (λ(a : A) (b : B a), C ⟨a, b⟩) p b (f b) = g (eq.transport B p b)) -/ definition dpath_pi_sigma {C : (Σa, B a) → Type} (p : a = a') (f : Π(b : B a), C ⟨a, b⟩) (g : Π(b' : B a'), C ⟨a', b'⟩) : (Π(b : B a), (sigma.path p idp) ▹ (f b) = g (p ▹ b)) ≃ (Π(b : B a), p ▹D (f b) = g (p ▹ b)) := eq.rec_on p (λg, !equiv.refl) g end /- truncation -/ open truncation definition trunc_pi [instance] [H : funext.{l k}] (B : A → Type.{k}) (n : trunc_index) [H : ∀a, is_trunc n (B a)] : is_trunc n (Πa, B a) := begin reverts (B, H), apply (trunc_index.rec_on n), intros (B, H), fapply is_contr.mk, intro a, apply center, intro f, apply path_pi, intro x, apply (contr (f x)), intros (n, IH, B, H), fapply is_trunc_succ, intros (f, g), fapply trunc_equiv', apply equiv.symm, apply path_equiv_homotopy, apply IH, intro a, show is_trunc n (f a = g a), from succ_is_trunc n (f a) (g a) end definition trunc_path_pi [instance] [H : funext.{l k}] (n : trunc_index) (f g : Πa, B a) [H : ∀a, is_trunc n (f a = g a)] : is_trunc n (f = g) := begin apply trunc_equiv', apply equiv.symm, apply path_equiv_homotopy end end pi