-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Leonardo de Moura definition Bool [inline] := Type.{0} inductive false : Bool := -- No constructors theorem false_elim (c : Bool) (H : false) := false_rec c H inductive true : Bool := | trivial : true definition not (a : Bool) := a → false prefix `¬`:40 := not notation `assume` binders `,` r:(scoped f, f) := r notation `take` binders `,` r:(scoped f, f) := r theorem not_intro {a : Bool} (H : a → false) : ¬ a := H theorem not_elim {a : Bool} (H1 : ¬ a) (H2 : a) : false := H1 H2 theorem absurd {a : Bool} (H1 : a) (H2 : ¬ a) : false := H2 H1 theorem mt {a b : Bool} (H1 : a → b) (H2 : ¬ b) : ¬ a := assume Ha : a, absurd (H1 Ha) H2 theorem contrapos {a b : Bool} (H : a → b) : ¬ b → ¬ a := assume Hnb : ¬ b, mt H Hnb theorem absurd_elim {a : Bool} (b : Bool) (H1 : a) (H2 : ¬ a) : b := false_elim b (absurd H1 H2) theorem absurd_not_true (H : ¬ true) : false := absurd trivial H theorem not_false_trivial : ¬ false := assume H : false, H inductive and (a b : Bool) : Bool := | and_intro : a → b → and a b infixr `/\`:35 := and infixr `∧`:35 := and theorem and_elim {a b c : Bool} (H1 : a → b → c) (H2 : a ∧ b) : c := and_rec H1 H2 theorem and_elim_left {a b : Bool} (H : a ∧ b) : a := and_rec (λ a b, a) H theorem and_elim_right {a b : Bool} (H : a ∧ b) : b := and_rec (λ a b, b) H inductive or (a b : Bool) : Bool := | or_intro_left : a → or a b | or_intro_right : b → or a b infixr `\/`:30 := or infixr `∨`:30 := or theorem or_elim {a b c : Bool} (H1 : a ∨ b) (H2 : a → c) (H3 : b → c) : c := or_rec H2 H3 H1 theorem resolve_right {a b : Bool} (H1 : a ∨ b) (H2 : ¬ a) : b := or_elim H1 (assume Ha, absurd_elim b Ha H2) (assume Hb, Hb) theorem resolve_left {a b : Bool} (H1 : a ∨ b) (H2 : ¬ b) : a := or_elim H1 (assume Ha, Ha) (assume Hb, absurd_elim a Hb H2) theorem or_flip {a b : Bool} (H : a ∨ b) : b ∨ a := or_elim H (assume Ha, or_intro_right b Ha) (assume Hb, or_intro_left a Hb) inductive eq {A : Type} (a : A) : A → Bool := | refl : eq a a infix `=`:50 := eq theorem subst {A : Type} {a b : A} {P : A → Bool} (H1 : a = b) (H2 : P a) : P b := eq_rec H2 H1 theorem trans {A : Type} {a b c : A} (H1 : a = b) (H2 : b = c) : a = c := subst H2 H1 calc_subst subst calc_refl refl calc_trans trans theorem true_ne_false : ¬ true = false := assume H : true = false, subst H trivial theorem symm {A : Type} {a b : A} (H : a = b) : b = a := subst H (refl a) theorem congr1 {A : Type} {B : A → Type} {f g : Π x, B x} (H : f = g) (a : A) : f a = g a := subst H (refl (f a)) theorem congr2 {A : Type} {B : Type} {a b : A} (f : A → B) (H : a = b) : f a = f b := subst H (refl (f a)) theorem congr {A : Type} {B : Type} {f g : A → B} {a b : A} (H1 : f = g) (H2 : a = b) : f a = g b := subst H1 (subst H2 (refl (f a))) theorem equal_f {A : Type} {B : A → Type} {f g : Π x, B x} (H : f = g) : ∀ x, f x = g x := take x, congr1 H x theorem not_congr {a b : Bool} (H : a = b) : (¬ a) = (¬ b) := congr2 not H theorem eqmp {a b : Bool} (H1 : a = b) (H2 : a) : b := subst H1 H2 infixl `<|`:100 := eqmp infixl `◂`:100 := eqmp theorem eqmpr {a b : Bool} (H1 : a = b) (H2 : b) : a := (symm H1) ◂ H2 theorem eqt_elim {a : Bool} (H : a = true) : a := (symm H) ◂ trivial theorem eqf_elim {a : Bool} (H : a = false) : ¬ a := not_intro (assume Ha : a, H ◂ Ha) theorem imp_trans {a b c : Bool} (H1 : a → b) (H2 : b → c) : a → c := assume Ha, H2 (H1 Ha) theorem imp_eq_trans {a b c : Bool} (H1 : a → b) (H2 : b = c) : a → c := assume Ha, H2 ◂ (H1 Ha) theorem eq_imp_trans {a b c : Bool} (H1 : a = b) (H2 : b → c) : a → c := assume Ha, H2 (H1 ◂ Ha) definition ne {A : Type} (a b : A) := ¬ (a = b) infix `≠`:50 := ne theorem ne_intro {A : Type} {a b : A} (H : a = b → false) : a ≠ b := H theorem ne_elim {A : Type} {a b : A} (H1 : a ≠ b) (H2 : a = b) : false := H1 H2 theorem a_neq_a_elim {A : Type} {a : A} (H : a ≠ a) : false := H (refl a) theorem ne_irrefl {A : Type} {a : A} (H : a ≠ a) : false := H (refl a) theorem ne_symm {A : Type} {a b : A} (H : a ≠ b) : b ≠ a := assume H1 : b = a, H (symm H1) theorem eq_ne_trans {A : Type} {a b c : A} (H1 : a = b) (H2 : b ≠ c) : a ≠ c := subst (symm H1) H2 theorem ne_eq_trans {A : Type} {a b c : A} (H1 : a ≠ b) (H2 : b = c) : a ≠ c := subst H2 H1 calc_trans eq_ne_trans calc_trans ne_eq_trans definition iff (a b : Bool) := (a → b) ∧ (b → a) infix `↔`:50 := iff theorem iff_intro {a b : Bool} (H1 : a → b) (H2 : b → a) : a ↔ b := and_intro H1 H2 theorem iff_elim {a b c : Bool} (H1 : (a → b) → (b → a) → c) (H2 : a ↔ b) : c := and_rec H1 H2 theorem iff_elim_left {a b : Bool} (H : a ↔ b) : a → b := iff_elim (assume H1 H2, H1) H theorem iff_elim_right {a b : Bool} (H : a ↔ b) : b → a := iff_elim (assume H1 H2, H2) H theorem iff_mp_left {a b : Bool} (H1 : a ↔ b) (H2 : a) : b := (iff_elim_left H1) H2 theorem iff_mp_right {a b : Bool} (H1 : a ↔ b) (H2 : b) : a := (iff_elim_right H1) H2 theorem eq_to_iff {a b : Bool} (H : a = b) : a ↔ b := iff_intro (λ Ha, subst H Ha) (λ Hb, subst (symm H) Hb) inductive Exists {A : Type} (P : A → Bool) : Bool := | exists_intro : ∀ (a : A), P a → Exists P notation `∃` binders `,` r:(scoped P, Exists P) := r theorem exists_elim {A : Type} {P : A → Bool} {B : Bool} (H1 : ∃ x : A, P x) (H2 : ∀ (a : A) (H : P a), B) : B := Exists_rec H2 H1 definition exists_unique {A : Type} (p : A → Bool) := ∃ x, p x ∧ ∀ y, y ≠ x → ¬ p y notation `∃!` binders `,` r:(scoped P, exists_unique P) := r theorem exists_unique_intro {A : Type} {p : A → Bool} (w : A) (H1 : p w) (H2 : ∀ y, y ≠ w → ¬ p y) : ∃! x, p x := exists_intro w (and_intro H1 H2) theorem exists_unique_elim {A : Type} {p : A → Bool} {b : Bool} (H2 : ∃! x, p x) (H1 : ∀ x, p x → (∀ y, y ≠ x → ¬ p y) → b) : b := obtains w Hw, from H2, H1 w (and_elim_left Hw) (and_elim_right Hw) inductive inhabited (A : Type) : Bool := | inhabited_intro : A → inhabited A theorem inhabited_elim {A : Type} {B : Bool} (H1 : inhabited A) (H2 : A → B) : B := inhabited_rec H2 H1 theorem inhabited_Bool [instance] : inhabited Bool := inhabited_intro true theorem inhabited_fun [instance] (A : Type) {B : Type} (H : inhabited B) : inhabited (A → B) := inhabited_elim H (take (b : B), inhabited_intro (λ a : A, b)) definition cast {A B : Type} (H : A = B) (a : A) : B := eq_rec a H theorem cast_refl {A : Type} (a : A) : cast (refl A) a = a := refl (cast (refl A) a) theorem cast_proof_irrel {A B : Type} (H1 H2 : A = B) (a : A) : cast H1 a = cast H2 a := refl (cast H1 a) theorem cast_eq {A : Type} (H : A = A) (a : A) : cast H a = a := calc cast H a = cast (refl A) a : cast_proof_irrel H (refl A) a ... = a : cast_refl a definition heq {A B : Type} (a : A) (b : B) := ∃ H, cast H a = b infixl `==`:50 := heq theorem heq_type_eq {A B : Type} {a : A} {b : B} (H : a == b) : A = B := obtains w Hw, from H, w theorem eq_to_heq {A : Type} {a b : A} (H : a = b) : a == b := exists_intro (refl A) (trans (cast_refl a) H) theorem heq_to_eq {A : Type} {a b : A} (H : a == b) : a = b := obtains (w : A = A) (Hw : cast w a = b), from H, calc a = cast w a : symm (cast_eq w a) ... = b : Hw theorem heq_refl {A : Type} (a : A) : a == a := eq_to_heq (refl a) theorem heqt_elim {a : Bool} (H : a == true) : a := eqt_elim (heq_to_eq H)