local env = environment() local l = mk_param_univ("l") local A = Const("A") local U_l = mk_sort(l) local U_l1 = mk_sort(max_univ(l, 1)) -- Make sure U_l1 is not Bool/Prop local list_l = Const("list", {l}) -- list.{l} local Nat = Const("nat") local vec_l = Const("vec", {l}) -- vec.{l} local zero = Const("zero") local succ = Const("succ") local forest_l = Const("forest", {l}) local tree_l = Const("tree", {l}) local n = Const("n") env = env:add_global_level("u") env = env:add_global_level("v") local u = global_univ("u") local v = global_univ("v") function display_type(env, t) print(tostring(t) .. " : " .. tostring(type_checker(env):check(t))) end env = add_inductive(env, "nat", Type, "zero", Nat, "succ", mk_arrow(Nat, Nat)) -- In the following inductive datatype, {l} is the list of universe level parameters. -- 1 is the number of parameters. -- The Boolean true in {A, U_l, true} is marking that this argument is implicit. env = add_inductive(env, "list", {l}, 1, Pi(A, U_l, U_l1), "nil", Pi({{A, U_l, true}}, list_l(A)), "cons", Pi({{A, U_l, true}}, mk_arrow(A, list_l(A), list_l(A)))) env = add_inductive(env, "vec", {l}, 1, Pi({{A, U_l}, {n, Nat}}, U_l1), "vnil", Pi({{A, U_l, true}}, vec_l(A, zero)), "vcons", Pi({{A, U_l, true}, {n, Nat, true}}, mk_arrow(A, vec_l(A, n), vec_l(A, succ(n))))) local And = Const("and") local Or = Const("or") local B = Const("B") -- Datatype without introduction rules (aka constructors). It is a uninhabited type. env = add_inductive(env, "false", Bool) -- Datatype with a single constructor. env = add_inductive(env, "true", Bool, "trivial", Const("true")) env = add_inductive(env, "and", 2, Pi({{A, Bool}, {B, Bool}}, Bool), "and_intro", Pi({{A, Bool, true}, {B, Bool, true}}, mk_arrow(A, B, And(A, B)))) env = add_inductive(env, "or", 2, Pi({{A, Bool}, {B, Bool}}, Bool), "or_intro_left", Pi({{A, Bool, true}, {B, Bool, true}}, mk_arrow(A, Or(A, B))), "or_intro_right", Pi({{A, Bool, true}, {B, Bool, true}}, mk_arrow(B, Or(A, B)))) local P = Const("P") local a = Const("a") local exists_l = Const("exists", {l}) env = add_inductive(env, "exists", {l}, 2, Pi({{A, U_l}, {P, mk_arrow(A, Bool)}}, Bool), "exists_intro", Pi({{A, U_l, true}, {P, mk_arrow(A, Bool), true}, {a, A}}, mk_arrow(P(a), exists_l(A, P)))) env = add_inductive(env, {l}, 1, {"tree", Pi(A, U_l, U_l1), "node", Pi({{A, U_l, true}}, mk_arrow(A, forest_l(A), tree_l(A))) }, {"forest", Pi(A, U_l, U_l1), "emptyf", Pi({{A, U_l, true}}, forest_l(A)), "consf", Pi({{A, U_l, true}}, mk_arrow(tree_l(A), forest_l(A), forest_l(A)))}) local tc = type_checker(env) display_type(env, Const("forest", {0})) display_type(env, Const("vcons", {0})) display_type(env, Const("consf", {0})) display_type(env, Const("forest_rec", {v, u})) display_type(env, Const("nat_rec", {v})) display_type(env, Const("or_rec")) local Even = Const("Even") local Odd = Const("Odd") local b = Const("b") env = add_inductive(env, {}, {"Even", mk_arrow(Nat, Bool), "zero_is_even", Even(zero), "succ_odd", Pi(b, Nat, mk_arrow(Odd(b), Even(succ(b))))}, {"Odd", mk_arrow(Nat, Bool), "succ_even", Pi(b, Nat, mk_arrow(Even(b), Odd(succ(b))))}) local flist_l = Const("flist", {l}) env = add_inductive(env, "flist", {l}, 1, Pi(A, U_l, U_l1), "fnil", Pi({{A, U_l, true}}, flist_l(A)), "fcons", Pi({{A, U_l, true}}, mk_arrow(mk_arrow(Nat, A), mk_arrow(Nat, Bool, flist_l(A)), flist_l(A)))) local eq_l = Const("eq", {l}) env = add_inductive(env, "eq", {l}, 2, Pi({{A, U_l}, {a, A}, {b, A}}, Bool), "refl", Pi({{A, U_l}, {a, A}}, eq_l(A, a, a))) display_type(env, Const("eq_rec", {v, u})) display_type(env, Const("exists_rec", {v, u})) display_type(env, Const("list_rec", {v, u})) display_type(env, Const("Even_rec")) display_type(env, Const("Odd_rec")) display_type(env, Const("and_rec", {v})) display_type(env, Const("vec_rec", {v, u})) display_type(env, Const("flist_rec", {v, u})) local n = Const("n") local c = Const("c") local nat_rec1 = Const("nat_rec", {1}) local add = Fun({{a, Nat}, {b, Nat}}, nat_rec1(mk_lambda("_", Nat, Nat), b, Fun({{n, Nat}, {c, Nat}}, succ(c)), a)) display_type(env, add) local tc = type_checker(env) assert(tc:is_def_eq(add(succ(succ(zero)), succ(zero)), succ(succ(succ(zero))))) assert(tc:is_def_eq(add(succ(succ(succ(zero))), succ(succ(zero))), succ(succ(succ(succ(succ(zero))))))) local list_nat = Const("list", {1})(Nat) local list_nat_rec1 = Const("list_rec", {1, 1})(Nat) display_type(env, list_nat_rec1) local h = Const("h") local t = Const("t") local lst = Const("lst") local length = Fun(lst, list_nat, list_nat_rec1(mk_lambda("_", list_nat, Nat), zero, Fun({{h, Nat}, {t, list_nat}, {c, Nat}}, succ(c)), lst)) local nil_nat = Const("nil", {1})(Nat) local cons_nat = Const("cons", {1})(Nat) print(tc:whnf(length(nil_nat))) assert(tc:is_def_eq(length(nil_nat), zero)) assert(tc:is_def_eq(length(cons_nat(zero, nil_nat)), succ(zero))) assert(tc:is_def_eq(length(cons_nat(zero, cons_nat(zero, nil_nat))), succ(succ(zero)))) -- Martin-Lof style identity type local Id_l = Const("Id", {l}) env = add_inductive(env, "Id", {l}, 1, Pi({{A, U_l}, {a, A}, {b, A}}, Bool), "Id_refl", Pi({{A, U_l, true}, {b, A}}, Id_l(A, b, b))) display_type(env, Const("Id_rec", {v, u}))