/- Copyright (c) 2014 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer, Floris van Doorn Ported from Coq HoTT -/ import arity .eq .bool .unit .sigma open is_trunc eq prod sigma nat equiv option is_equiv bool unit structure pointed [class] (A : Type) := (point : A) structure Pointed := {carrier : Type} (Point : carrier) open Pointed namespace pointed attribute Pointed.carrier [coercion] variables {A B : Type} definition pt [unfold-c 2] [H : pointed A] := point A protected abbreviation Mk [constructor] := @Pointed.mk protected definition mk' [constructor] (A : Type) [H : pointed A] : Pointed := Pointed.mk (point A) definition pointed_carrier [instance] [constructor] (A : Pointed) : pointed A := pointed.mk (Point A) -- Any contractible type is pointed definition pointed_of_is_contr [instance] [constructor] (A : Type) [H : is_contr A] : pointed A := pointed.mk !center -- A pi type with a pointed target is pointed definition pointed_pi [instance] [constructor] (P : A → Type) [H : Πx, pointed (P x)] : pointed (Πx, P x) := pointed.mk (λx, pt) -- A sigma type of pointed components is pointed definition pointed_sigma [instance] [constructor] (P : A → Type) [G : pointed A] [H : pointed (P pt)] : pointed (Σx, P x) := pointed.mk ⟨pt,pt⟩ definition pointed_prod [instance] [constructor] (A B : Type) [H1 : pointed A] [H2 : pointed B] : pointed (A × B) := pointed.mk (pt,pt) definition pointed_loop [instance] [constructor] (a : A) : pointed (a = a) := pointed.mk idp definition pointed_bool [instance] [constructor] : pointed bool := pointed.mk ff definition Bool [constructor] : Pointed := pointed.mk' bool definition pointed_fun_closed [constructor] (f : A → B) [H : pointed A] : pointed B := pointed.mk (f pt) definition Loop_space [reducible] [constructor] (A : Pointed) : Pointed := pointed.mk' (point A = point A) -- definition Iterated_loop_space : Pointed → ℕ → Pointed -- | Iterated_loop_space A 0 := A -- | Iterated_loop_space A (n+1) := Iterated_loop_space (Loop_space A) n definition Iterated_loop_space [reducible] (n : ℕ) (A : Pointed) : Pointed := nat.rec_on n (λA, A) (λn IH A, IH (Loop_space A)) A prefix `Ω`:(max+5) := Loop_space notation `Ω[`:95 n:0 `]`:0 A:95 := Iterated_loop_space n A definition iterated_loop_space (A : Type) [H : pointed A] (n : ℕ) : Type := Ω[n] (pointed.mk' A) open equiv.ops definition Pointed_eq {A B : Pointed} (f : A ≃ B) (p : f pt = pt) : A = B := begin cases A with A a, cases B with B b, esimp at *, fapply apd011 @Pointed.mk, { apply ua f}, { rewrite [cast_ua,p]}, end definition add_point [constructor] (A : Type) : Pointed := Pointed.mk (none : option A) postfix `₊`:(max+1) := add_point -- the inclusion A → A₊ is called "some", the extra point "pt" or "none" ("@none A") end pointed open pointed structure pointed_map (A B : Pointed) := (map : A → B) (respect_pt : map (Point A) = Point B) open pointed_map namespace pointed abbreviation respect_pt := @pointed_map.respect_pt -- definition transport_to_sigma {A B : Pointed} -- {P : Π(X : Type) (m : X → A → B), (Π(f : X), m f (Point A) = Point B) → (Π(m : A → B), m (Point A) = Point B → X) → Type} -- (H : P (Σ(f : A → B), f (Point A) = Point B) pr1 pr2 sigma.mk) : -- P (pointed_map A B) map respect_pt pointed_map.mk := -- sorry notation `map₊` := pointed_map attribute pointed_map.map [coercion] definition pointed_map_eq {A B : Pointed} {f g : map₊ A B} (r : Πa, f a = g a) (s : respect_pt f = (r pt) ⬝ respect_pt g) : f = g := begin cases f with f p, cases g with g q, esimp at *, fapply apo011 pointed_map.mk, { exact eq_of_homotopy r}, { apply concato_eq, apply pathover_eq_Fl, apply inv_con_eq_of_eq_con, rewrite [ap_eq_ap10,↑ap10,apd10_eq_of_homotopy,↑respect_pt at *,s]} end definition pointed_map_equiv_left (A : Type) (B : Pointed) : map₊ A₊ B ≃ (A → B) := begin fapply equiv.MK, { intro f a, cases f with f p, exact f (some a)}, { intro f, fapply pointed_map.mk, intro a, cases a, exact pt, exact f a, reflexivity}, { intro f, reflexivity}, { intro f, cases f with f p, esimp, fapply pointed_map_eq, { intro a, cases a; all_goals (esimp at *), exact p⁻¹}, { esimp, exact !con.left_inv⁻¹}}, end -- set_option pp.notation false -- definition pointed_map_equiv_right (A : Pointed) (B : Type) -- : (Σ(b : B), map₊ A (pointed.Mk b)) ≃ (A → B) := -- begin -- fapply equiv.MK, -- { intro u a, cases u with b f, cases f with f p, esimp at f, exact f a}, -- { intro f, refine ⟨f pt, _⟩, fapply pointed_map.mk, -- intro a, esimp, exact f a, -- reflexivity}, -- { intro f, reflexivity}, -- { intro u, cases u with b f, cases f with f p, esimp at *, apply sigma_eq p, -- esimp, apply sorry -- } -- end definition pointed_map_bool_equiv (B : Pointed) : map₊ Bool B ≃ B := begin fapply equiv.MK, { intro f, cases f with f p, exact f tt}, { intro b, fapply pointed_map.mk, intro u, cases u, exact pt, exact b, reflexivity}, { intro b, reflexivity}, { intro f, cases f with f p, esimp, fapply pointed_map_eq, { intro a, cases a; all_goals (esimp at *), exact p⁻¹}, { esimp, exact !con.left_inv⁻¹}}, end -- calc -- map₊ (Pointed.mk' bool) B ≃ map₊ unit₊ B : sorry -- ... ≃ (unit → B) : pointed_map_equiv -- ... ≃ B : unit_imp_equiv definition apn {A B : Pointed} {n : ℕ} (f : map₊ A B) (p : Ω[n] A) : Ω[n] B := begin revert A B f p, induction n with n IH, { intros A B f p, exact f p}, { intros A B f p, rewrite [↑Iterated_loop_space at p,↓Iterated_loop_space n (Ω A) at p, ↑Iterated_loop_space, ↓Iterated_loop_space n (Ω B)], apply IH (Ω A), { esimp, fapply pointed_map.mk, intro q, refine !respect_pt⁻¹ ⬝ ap f q ⬝ !respect_pt, esimp, apply con.left_inv}, { exact p}} end end pointed