/- Copyright (c) 2014 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Floris van Doorn An explicit treatment of quotients, without using Lean's built-in quotient types. -/ import logic data.subtype logic.cast algebra.relation data.prod import logic.instances import .util open relation prod inhabited nonempty tactic eq.ops open subtype relation.iff_ops namespace quotient /- definition and basics -/ -- TODO: make this a structure definition is_quotient {A B : Type} (R : A → A → Prop) (abs : A → B) (rep : B → A) : Prop := (∀b, abs (rep b) = b) ∧ (∀b, R (rep b) (rep b)) ∧ (∀r s, R r s ↔ (R r r ∧ R s s ∧ abs r = abs s)) theorem intro {A B : Type} {R : A → A → Prop} {abs : A → B} {rep : B → A} (H1 : ∀b, abs (rep b) = b) (H2 : ∀b, R (rep b) (rep b)) (H3 : ∀r s, R r s ↔ (R r r ∧ R s s ∧ abs r = abs s)) : is_quotient R abs rep := and.intro H1 (and.intro H2 H3) theorem and_absorb_left {a : Prop} (b : Prop) (Ha : a) : a ∧ b ↔ b := iff.intro (assume Hab, and.elim_right Hab) (assume Hb, and.intro Ha Hb) theorem intro_refl {A B : Type} {R : A → A → Prop} {abs : A → B} {rep : B → A} (H1 : reflexive R) (H2 : ∀b, abs (rep b) = b) (H3 : ∀r s, R r s ↔ abs r = abs s) : is_quotient R abs rep := intro H2 (take b, H1 (rep b)) (take r s, have H4 : R r s ↔ R s s ∧ abs r = abs s, from subst (symm (and_absorb_left _ (H1 s))) (H3 r s), subst (symm (and_absorb_left _ (H1 r))) H4) theorem abs_rep {A B : Type} {R : A → A → Prop} {abs : A → B} {rep : B → A} (Q : is_quotient R abs rep) (b : B) : abs (rep b) = b := and.elim_left Q b theorem refl_rep {A B : Type} {R : A → A → Prop} {abs : A → B} {rep : B → A} (Q : is_quotient R abs rep) (b : B) : R (rep b) (rep b) := and.elim_left (and.elim_right Q) b theorem R_iff {A B : Type} {R : A → A → Prop} {abs : A → B} {rep : B → A} (Q : is_quotient R abs rep) (r s : A) : R r s ↔ (R r r ∧ R s s ∧ abs r = abs s) := and.elim_right (and.elim_right Q) r s theorem refl_left {A B : Type} {R : A → A → Prop} {abs : A → B} {rep : B → A} (Q : is_quotient R abs rep) {r s : A} (H : R r s) : R r r := and.elim_left (iff.elim_left (R_iff Q r s) H) theorem refl_right {A B : Type} {R : A → A → Prop} {abs : A → B} {rep : B → A} (Q : is_quotient R abs rep) {r s : A} (H : R r s) : R s s := and.elim_left (and.elim_right (iff.elim_left (R_iff Q r s) H)) theorem eq_abs {A B : Type} {R : A → A → Prop} {abs : A → B} {rep : B → A} (Q : is_quotient R abs rep) {r s : A} (H : R r s) : abs r = abs s := and.elim_right (and.elim_right (iff.elim_left (R_iff Q r s) H)) theorem R_intro {A B : Type} {R : A → A → Prop} {abs : A → B} {rep : B → A} (Q : is_quotient R abs rep) {r s : A} (H1 : R r r) (H2 : R s s) (H3 : abs r = abs s) : R r s := iff.elim_right (R_iff Q r s) (and.intro H1 (and.intro H2 H3)) theorem R_intro_refl {A B : Type} {R : A → A → Prop} {abs : A → B} {rep : B → A} (Q : is_quotient R abs rep) (H1 : reflexive R) {r s : A} (H2 : abs r = abs s) : R r s := iff.elim_right (R_iff Q r s) (and.intro (H1 r) (and.intro (H1 s) H2)) theorem rep_eq {A B : Type} {R : A → A → Prop} {abs : A → B} {rep : B → A} (Q : is_quotient R abs rep) {a b : B} (H : R (rep a) (rep b)) : a = b := calc a = abs (rep a) : eq.symm (abs_rep Q a) ... = abs (rep b) : {eq_abs Q H} ... = b : abs_rep Q b theorem R_rep_abs {A B : Type} {R : A → A → Prop} {abs : A → B} {rep : B → A} (Q : is_quotient R abs rep) {a : A} (H : R a a) : R a (rep (abs a)) := have H3 : abs a = abs (rep (abs a)), from eq.symm (abs_rep Q (abs a)), R_intro Q H (refl_rep Q (abs a)) H3 theorem quotient_imp_symm {A B : Type} {R : A → A → Prop} {abs : A → B} {rep : B → A} (Q : is_quotient R abs rep) : symmetric R := take a b : A, assume H : R a b, have Ha : R a a, from refl_left Q H, have Hb : R b b, from refl_right Q H, have Hab : abs b = abs a, from eq.symm (eq_abs Q H), R_intro Q Hb Ha Hab theorem quotient_imp_trans {A B : Type} {R : A → A → Prop} {abs : A → B} {rep : B → A} (Q : is_quotient R abs rep) : transitive R := take a b c : A, assume Hab : R a b, assume Hbc : R b c, have Ha : R a a, from refl_left Q Hab, have Hc : R c c, from refl_right Q Hbc, have Hac : abs a = abs c, from eq.trans (eq_abs Q Hab) (eq_abs Q Hbc), R_intro Q Ha Hc Hac /- recursion -/ -- (maybe some are superfluous) definition rec {A B : Type} {R : A → A → Prop} {abs : A → B} {rep : B → A} (Q : is_quotient R abs rep) {C : B → Type} (f : forall (a : A), C (abs a)) (b : B) : C b := eq.rec_on (abs_rep Q b) (f (rep b)) theorem comp {A B : Type} {R : A → A → Prop} {abs : A → B} {rep : B → A} (Q : is_quotient R abs rep) {C : B → Type} {f : forall (a : A), C (abs a)} (H : forall (r s : A) (H' : R r s), eq.rec_on (eq_abs Q H') (f r) = f s) {a : A} (Ha : R a a) : rec Q f (abs a) = f a := assert H2 : R a (rep (abs a)), from R_rep_abs Q Ha, assert Heq : abs (rep (abs a)) = abs a, from abs_rep Q (abs a), calc rec Q f (abs a) = eq.rec_on Heq (f (rep (abs a))) : rfl ... = eq.rec_on Heq (eq.rec_on (Heq⁻¹) (f a)) : {(H _ _ H2)⁻¹} ... = f a : eq.rec_on_compose (eq_abs Q H2) _ _ definition rec_constant {A B : Type} {R : A → A → Prop} {abs : A → B} {rep : B → A} (Q : is_quotient R abs rep) {C : Type} (f : A → C) (b : B) : C := f (rep b) theorem comp_constant {A B : Type} {R : A → A → Prop} {abs : A → B} {rep : B → A} (Q : is_quotient R abs rep) {C : Type} {f : A → C} (H : forall (r s : A) (H' : R r s), f r = f s) {a : A} (Ha : R a a) : rec_constant Q f (abs a) = f a := have H2 : R a (rep (abs a)), from R_rep_abs Q Ha, calc rec_constant Q f (abs a) = f (rep (abs a)) : rfl ... = f a : {(H _ _ H2)⁻¹} definition rec_binary {A B : Type} {R : A → A → Prop} {abs : A → B} {rep : B → A} (Q : is_quotient R abs rep) {C : Type} (f : A → A → C) (b c : B) : C := f (rep b) (rep c) theorem comp_binary {A B : Type} {R : A → A → Prop} {abs : A → B} {rep : B → A} (Q : is_quotient R abs rep) {C : Type} {f : A → A → C} (H : forall (a a' b b' : A) (Ha : R a a') (Hb : R b b'), f a b = f a' b') {a b : A} (Ha : R a a) (Hb : R b b) : rec_binary Q f (abs a) (abs b) = f a b := have H2 : R a (rep (abs a)), from R_rep_abs Q Ha, have H3 : R b (rep (abs b)), from R_rep_abs Q Hb, calc rec_binary Q f (abs a) (abs b) = f (rep (abs a)) (rep (abs b)) : rfl ... = f a b : {(H _ _ _ _ H2 H3)⁻¹} theorem comp_binary_refl {A B : Type} {R : A → A → Prop} {abs : A → B} {rep : B → A} (Q : is_quotient R abs rep) (Hrefl : reflexive R) {C : Type} {f : A → A → C} (H : forall (a a' b b' : A) (Ha : R a a') (Hb : R b b'), f a b = f a' b') (a b : A) : rec_binary Q f (abs a) (abs b) = f a b := comp_binary Q H (Hrefl a) (Hrefl b) definition quotient_map {A B : Type} {R : A → A → Prop} {abs : A → B} {rep : B → A} (Q : is_quotient R abs rep) (f : A → A) (b : B) : B := abs (f (rep b)) theorem comp_quotient_map {A B : Type} {R : A → A → Prop} {abs : A → B} {rep : B → A} (Q : is_quotient R abs rep) {f : A → A} (H : forall (a a' : A) (Ha : R a a'), R (f a) (f a')) {a : A} (Ha : R a a) : quotient_map Q f (abs a) = abs (f a) := have H2 : R a (rep (abs a)), from R_rep_abs Q Ha, have H3 : R (f a) (f (rep (abs a))), from H _ _ H2, have H4 : abs (f a) = abs (f (rep (abs a))), from eq_abs Q H3, H4⁻¹ definition quotient_map_binary {A B : Type} {R : A → A → Prop} {abs : A → B} {rep : B → A} (Q : is_quotient R abs rep) (f : A → A → A) (b c : B) : B := abs (f (rep b) (rep c)) theorem comp_quotient_map_binary {A B : Type} {R : A → A → Prop} {abs : A → B} {rep : B → A} (Q : is_quotient R abs rep) {f : A → A → A} (H : forall (a a' b b' : A) (Ha : R a a') (Hb : R b b'), R (f a b) (f a' b')) {a b : A} (Ha : R a a) (Hb : R b b) : quotient_map_binary Q f (abs a) (abs b) = abs (f a b) := have Ha2 : R a (rep (abs a)), from R_rep_abs Q Ha, have Hb2 : R b (rep (abs b)), from R_rep_abs Q Hb, have H2 : R (f a b) (f (rep (abs a)) (rep (abs b))), from H _ _ _ _ Ha2 Hb2, (eq_abs Q H2)⁻¹ theorem comp_quotient_map_binary_refl {A B : Type} {R : A → A → Prop} (Hrefl : reflexive R) {abs : A → B} {rep : B → A} (Q : is_quotient R abs rep) {f : A → A → A} (H : forall (a a' b b' : A) (Ha : R a a') (Hb : R b b'), R (f a b) (f a' b')) (a b : A) : quotient_map_binary Q f (abs a) (abs b) = abs (f a b) := comp_quotient_map_binary Q H (Hrefl a) (Hrefl b) /- image -/ definition image {A B : Type} (f : A → B) := subtype (fun b, ∃a, f a = b) theorem image_inhabited {A B : Type} (f : A → B) (H : inhabited A) : inhabited (image f) := inhabited.mk (tag (f (default A)) (exists.intro (default A) rfl)) theorem image_inhabited2 {A B : Type} (f : A → B) (a : A) : inhabited (image f) := image_inhabited f (inhabited.mk a) definition fun_image {A B : Type} (f : A → B) (a : A) : image f := tag (f a) (exists.intro a rfl) theorem fun_image_def {A B : Type} (f : A → B) (a : A) : fun_image f a = tag (f a) (exists.intro a rfl) := rfl theorem elt_of_fun_image {A B : Type} (f : A → B) (a : A) : elt_of (fun_image f a) = f a := elt_of.tag _ _ theorem image_elt_of {A B : Type} {f : A → B} (u : image f) : ∃a, f a = elt_of u := has_property u theorem fun_image_surj {A B : Type} {f : A → B} (u : image f) : ∃a, fun_image f a = u := subtype.destruct u (take (b : B) (H : ∃a, f a = b), obtain a (H': f a = b), from H, (exists.intro a (tag_eq H'))) theorem image_tag {A B : Type} {f : A → B} (u : image f) : ∃a H, tag (f a) H = u := obtain a (H : fun_image f a = u), from fun_image_surj u, exists.intro a (exists.intro (exists.intro a rfl) H) open eq.ops theorem fun_image_eq {A B : Type} (f : A → B) (a a' : A) : (f a = f a') ↔ (fun_image f a = fun_image f a') := iff.intro (assume H : f a = f a', tag_eq H) (assume H : fun_image f a = fun_image f a', (congr_arg elt_of H ▸ elt_of_fun_image f a) ▸ elt_of_fun_image f a') theorem idempotent_image_elt_of {A : Type} {f : A → A} (H : ∀a, f (f a) = f a) (u : image f) : fun_image f (elt_of u) = u := obtain (a : A) (Ha : fun_image f a = u), from fun_image_surj u, calc fun_image f (elt_of u) = fun_image f (elt_of (fun_image f a)) : {Ha⁻¹} ... = fun_image f (f a) : {elt_of_fun_image f a} ... = fun_image f a : {iff.elim_left (fun_image_eq f (f a) a) (H a)} ... = u : Ha theorem idempotent_image_fix {A : Type} {f : A → A} (H : ∀a, f (f a) = f a) (u : image f) : f (elt_of u) = elt_of u := obtain (a : A) (Ha : f a = elt_of u), from image_elt_of u, calc f (elt_of u) = f (f a) : {Ha⁻¹} ... = f a : H a ... = elt_of u : Ha /- construct quotient from representative map -/ theorem representative_map_idempotent {A : Type} {R : A → A → Prop} {f : A → A} (H1 : ∀a, R a (f a)) (H2 : ∀a b, R a b ↔ R a a ∧ R b b ∧ f a = f b) (a : A) : f (f a) = f a := (and.elim_right (and.elim_right (iff.elim_left (H2 a (f a)) (H1 a))))⁻¹ theorem representative_map_idempotent_equiv {A : Type} {R : A → A → Prop} {f : A → A} (H1 : ∀a, R a (f a)) (H2 : ∀a b, R a b → f a = f b) (a : A) : f (f a) = f a := (H2 a (f a) (H1 a))⁻¹ theorem representative_map_refl_rep {A : Type} {R : A → A → Prop} {f : A → A} (H1 : ∀a, R a (f a)) (H2 : ∀a b, R a b ↔ R a a ∧ R b b ∧ f a = f b) (a : A) : R (f a) (f a) := representative_map_idempotent H1 H2 a ▸ H1 (f a) theorem representative_map_image_fix {A : Type} {R : A → A → Prop} {f : A → A} (H1 : ∀a, R a (f a)) (H2 : ∀a a', R a a' ↔ R a a ∧ R a' a' ∧ f a = f a') (b : image f) : f (elt_of b) = elt_of b := idempotent_image_fix (representative_map_idempotent H1 H2) b theorem representative_map_to_quotient {A : Type} {R : A → A → Prop} {f : A → A} (H1 : ∀a, R a (f a)) (H2 : ∀a a', R a a' ↔ R a a ∧ R a' a' ∧ f a = f a') : is_quotient R (fun_image f) elt_of := let abs := fun_image f in intro (take u : image f, obtain (a : A) (Ha : f a = elt_of u), from image_elt_of u, have H : elt_of (abs (elt_of u)) = elt_of u, from calc elt_of (abs (elt_of u)) = f (elt_of u) : elt_of_fun_image _ _ ... = f (f a) : {Ha⁻¹} ... = f a : representative_map_idempotent H1 H2 a ... = elt_of u : Ha, show abs (elt_of u) = u, from subtype.equal H) (take u : image f, show R (elt_of u) (elt_of u), from obtain (a : A) (Ha : f a = elt_of u), from image_elt_of u, Ha ▸ (@representative_map_refl_rep A R f H1 H2 a)) (take a a', subst (fun_image_eq f a a') (H2 a a')) theorem representative_map_equiv_inj {A : Type} {R : A → A → Prop} (equiv : is_equivalence R) {f : A → A} (H1 : ∀a, R a (f a)) (H2 : ∀a b, R a b → f a = f b) {a b : A} (H3 : f a = f b) : R a b := have symmR : relation.symmetric R, from rel_symm R, have transR : relation.transitive R, from rel_trans R, show R a b, from have H2 : R a (f b), from H3 ▸ (H1 a), have H3 : R (f b) b, from symmR (H1 b), transR H2 H3 theorem representative_map_to_quotient_equiv {A : Type} {R : A → A → Prop} (equiv : is_equivalence R) {f : A → A} (H1 : ∀a, R a (f a)) (H2 : ∀a b, R a b → f a = f b) : @is_quotient A (image f) R (fun_image f) elt_of := representative_map_to_quotient H1 (take a b, have reflR : reflexive R, from rel_refl R, have H3 : f a = f b → R a b, from representative_map_equiv_inj equiv H1 H2, have H4 : R a b ↔ f a = f b, from iff.intro (H2 a b) H3, have H5 : R a b ↔ R b b ∧ f a = f b, from subst (symm (and_absorb_left _ (reflR b))) H4, subst (symm (and_absorb_left _ (reflR a))) H5) end quotient