/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn homotopy groups of a pointed space -/ import .trunc_group .hott types.trunc open nat eq pointed trunc is_trunc algebra namespace eq definition phomotopy_group [constructor] (n : ℕ) (A : Type*) : Set* := ptrunc 0 (Ω[n] A) definition homotopy_group [reducible] (n : ℕ) (A : Type*) : Type := phomotopy_group n A notation `π*[`:95 n:0 `] `:0 A:95 := phomotopy_group n A notation `π[`:95 n:0 `] `:0 A:95 := homotopy_group n A definition group_homotopy_group [instance] [constructor] (n : ℕ) (A : Type*) : group (π[succ n] A) := trunc_group concat inverse idp con.assoc idp_con con_idp con.left_inv definition comm_group_homotopy_group [constructor] (n : ℕ) (A : Type*) : comm_group (π[succ (succ n)] A) := trunc_comm_group concat inverse idp con.assoc idp_con con_idp con.left_inv eckmann_hilton local attribute comm_group_homotopy_group [instance] definition ghomotopy_group [constructor] (n : ℕ) (A : Type*) : Group := Group.mk (π[succ n] A) _ definition cghomotopy_group [constructor] (n : ℕ) (A : Type*) : CommGroup := CommGroup.mk (π[succ (succ n)] A) _ definition fundamental_group [constructor] (A : Type*) : Group := ghomotopy_group zero A notation `πg[`:95 n:0 ` +1] `:0 A:95 := ghomotopy_group n A notation `πag[`:95 n:0 ` +2] `:0 A:95 := cghomotopy_group n A prefix `π₁`:95 := fundamental_group definition phomotopy_group_pequiv [constructor] (n : ℕ) {A B : Type*} (H : A ≃* B) : π*[n] A ≃* π*[n] B := ptrunc_pequiv_ptrunc 0 (loopn_pequiv_loopn n H) definition phomotopy_group_pequiv_loop_ptrunc [constructor] (k : ℕ) (A : Type*) : π*[k] A ≃* Ω[k] (ptrunc k A) := begin refine !iterated_loop_ptrunc_pequiv⁻¹ᵉ* ⬝e* _, exact loopn_pequiv_loopn k (pequiv_of_eq begin rewrite [trunc_index.zero_add] end) end open equiv unit theorem trivial_homotopy_of_is_set (A : Type*) [H : is_set A] (n : ℕ) : πg[n+1] A = G0 := begin apply trivial_group_of_is_contr, apply is_trunc_trunc_of_is_trunc, apply is_contr_loop_of_is_trunc, apply is_trunc_succ_succ_of_is_set end definition phomotopy_group_succ_out (A : Type*) (n : ℕ) : π*[n + 1] A = π₁ Ω[n] A := idp definition phomotopy_group_succ_in (A : Type*) (n : ℕ) : π*[n + 1] A = π*[n] Ω A := ap (ptrunc 0) (loop_space_succ_eq_in A n) definition ghomotopy_group_succ_out (A : Type*) (n : ℕ) : πg[n +1] A = π₁ Ω[n] A := idp definition ghomotopy_group_succ_in (A : Type*) (n : ℕ) : πg[succ n +1] A = πg[n +1] Ω A := begin fapply Group_eq, { apply equiv_of_eq, exact ap (ptrunc 0) (loop_space_succ_eq_in A (succ n))}, { exact abstract [irreducible] begin refine trunc.rec _, intro p, refine trunc.rec _, intro q, rewrite [▸*,-+tr_eq_cast_ap, +trunc_transport], refine !trunc_transport ⬝ _, apply ap tr, apply loop_space_succ_eq_in_concat end end}, end definition homotopy_group_add (A : Type*) (n m : ℕ) : πg[n+m +1] A = πg[n +1] Ω[m] A := begin revert A, induction m with m IH: intro A, { reflexivity}, { esimp [iterated_ploop_space, nat.add], refine !ghomotopy_group_succ_in ⬝ _, refine !IH ⬝ _, exact ap (ghomotopy_group n) !loop_space_succ_eq_in⁻¹} end theorem trivial_homotopy_add_of_is_set_loop_space {A : Type*} {n : ℕ} (m : ℕ) (H : is_set (Ω[n] A)) : πg[m+n+1] A = G0 := !homotopy_group_add ⬝ !trivial_homotopy_of_is_set theorem trivial_homotopy_le_of_is_set_loop_space {A : Type*} {n : ℕ} (m : ℕ) (H1 : n ≤ m) (H2 : is_set (Ω[n] A)) : πg[m+1] A = G0 := obtain (k : ℕ) (p : n + k = m), from le.elim H1, ap (λx, πg[x+1] A) (p⁻¹ ⬝ add.comm n k) ⬝ trivial_homotopy_add_of_is_set_loop_space k H2 definition phomotopy_group_functor [constructor] (n : ℕ) {A B : Type*} (f : A →* B) : π*[n] A →* π*[n] B := ptrunc_functor 0 (apn n f) definition homotopy_group_functor (n : ℕ) {A B : Type*} (f : A →* B) : π[n] A → π[n] B := phomotopy_group_functor n f notation `π→*[`:95 n:0 `] `:0 f:95 := phomotopy_group_functor n f notation `π→[`:95 n:0 `] `:0 f:95 := homotopy_group_functor n f definition tinverse [constructor] {X : Type*} : π*[1] X →* π*[1] X := ptrunc_functor 0 pinverse definition is_equiv_tinverse [constructor] (A : Type*) : is_equiv (@tinverse A) := by apply @is_equiv_trunc_functor; apply is_equiv_eq_inverse definition ptrunc_functor_pinverse [constructor] {X : Type*} : ptrunc_functor 0 (@pinverse X) ~* @tinverse X := begin fapply phomotopy.mk, { reflexivity}, { reflexivity} end definition phomotopy_group_functor_mul [constructor] (n : ℕ) {A B : Type*} (g : A →* B) (p q : πg[n+1] A) : (π→[n + 1] g) (p *[πg[n+1] A] q) = (π→[n + 1] g) p *[πg[n+1] B] (π→[n + 1] g) q := begin unfold [ghomotopy_group, homotopy_group] at *, refine @trunc.rec _ _ _ (λq, !is_trunc_eq) _ p, clear p, intro p, refine @trunc.rec _ _ _ (λq, !is_trunc_eq) _ q, clear q, intro q, apply ap tr, apply apn_con end end eq