/- Copyright (c) 2016 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jacob Gross, Jeremy Avigad Continuous functions. -/ import theories.topology.basic algebra.category ..move open algebra eq.ops set topology function category sigma.ops namespace topology /- continuity on a set -/ variables {X Y Z : Type} [topology X] [topology Y] [topology Z] definition continuous_on (f : X → Y) (s : set X) : Prop := ∀ ⦃t : set Y⦄, Open t → (∃ u : set X, Open u ∧ u ∩ s = f '- t ∩ s) theorem exists_Open_of_continous_on {f : X → Y} {s : set X} {t : set Y} (Ot : Open t) (H : continuous_on f s) : ∃ u : set X, Open u ∧ u ∩ s = f '- t ∩ s := H Ot theorem Open_preimage_inter_of_continuous_on {f : X → Y} {s : set X} (Os : Open s) (Hcont : continuous_on f s) {t : set Y} (Ot : Open t) : Open (f '- t ∩ s) := obtain u [Ou Hu], from Hcont Ot, by rewrite[-Hu]; exact Open_inter Ou Os theorem continuous_on_of_forall_open {f : X → Y} {s : set X} (H : ∀ t, Open t → Open (f '- t ∩ s)) : continuous_on f s := take t, assume Ot, have f '- t ∩ s ∩ s = f '- t ∩ s, by rewrite [inter_assoc, inter_self], exists.intro (f '- t ∩ s) (and.intro (H t Ot) this) theorem Open_preimage_of_continuous_on {f : X → Y} {s : set X} (Opens : Open s) (contfs : continuous_on f s) {t : set Y} (Ot : Open t) (Hpre : f '- t ⊆ s) : Open (f '- t) := have f '- t ∩ s = f '- t, from inter_eq_self_of_subset Hpre, show Open (f '- t), by rewrite -this; apply Open_preimage_inter_of_continuous_on Opens contfs Ot theorem exists_closed_of_continuous_on {f : X → Y} {s : set X} (contfs : continuous_on f s) {t : set Y} (clt : closed t) : ∃ u, closed u ∧ u ∩ s = f '- t ∩ s := obtain v [Ov (Hv : v ∩ s = f '- -t ∩ s)], from contfs clt, have -v ∩ s = f '- t ∩ s, from inter_eq_inter_of_compl_inter_eq_compl_inter (by rewrite [compl_compl, Hv]), show ∃ u, closed u ∧ u ∩ s = f '- t ∩ s, from exists.intro (-v) (and.intro (closed_compl Ov) this) theorem continuous_on_of_forall_closed' {f : X → Y} {s : set X} (H : ∀ t, closed t → ∃ u, closed u ∧ u ∩ s = f '- t ∩ s) : continuous_on f s := take t : set Y, assume Ot : Open t, obtain (v : set X) [(clv : closed v) (Hv : v ∩ s = f '- (-t) ∩ s)], from H (-t) (closed_compl Ot), have (-v) ∩ s = f '- t ∩ s, from inter_eq_inter_of_compl_inter_eq_compl_inter (by rewrite [compl_compl, Hv]), show ∃ u, Open u ∧ u ∩ s = f '- t ∩ s, from exists.intro (-v) (and.intro clv this) theorem continuous_on_of_forall_closed {f : X → Y} {s : set X} (closeds : closed s) (H : ∀ B, closed B → closed (f '- B ∩ s)) : continuous_on f s := continuous_on_of_forall_closed' (λ B HB, exists.intro _ (and.intro (H B HB) (by rewrite [inter_assoc, inter_self]))) theorem closed_preimage_inter_of_continuous_on {f : X → Y} {s : set Y} (cls : closed s) {t : set X} (clt : closed t) (contft : continuous_on f t) : closed (f '- s ∩ t) := obtain u [clu Hu], from exists_closed_of_continuous_on contft cls, by rewrite [-Hu]; exact (closed_inter clu clt) theorem continuous_on_subset {s t : set X} {f : X → Y} (Hs : continuous_on f s) (ts : t ⊆ s) : continuous_on f t := take u, assume Ou, obtain v [Ov Hv], from Hs Ou, have v ∩ t = f '- u ∩ t, by rewrite [-inter_eq_self_of_subset_right ts, -*inter_assoc, Hv], show ∃ v, Open v ∧ v ∩ t = f '- u ∩ t, from exists.intro v (and.intro Ov this) theorem continous_on_union_of_closed {f : X → Y} {s t : set X} (cls : closed s) (clt : closed t) (contsf : continuous_on f s) (conttf : continuous_on f t) : continuous_on f (s ∪ t) := have ∀ u, closed u → closed (f '- u ∩ (s ∪ t)), from begin intro u clu, rewrite [inter_distrib_left], exact closed_union (closed_preimage_inter_of_continuous_on clu cls contsf) (closed_preimage_inter_of_continuous_on clu clt conttf) end, show continuous_on f (s ∪ t), from continuous_on_of_forall_closed (closed_union cls clt) this theorem continuous_on_empty (f : X → Y) : continuous_on f ∅ := continuous_on_of_forall_open (take B, assume OpenB, by rewrite[inter_empty]; apply Open_empty) theorem continuous_on_union {f : X → Y} {s t : set X} (Opens : Open s) (Opent : Open t) (contsf : continuous_on f s) (conttf : continuous_on f t) : continuous_on f (s ∪ t) := continuous_on_of_forall_open (take B, assume OpenB, have Open (f '- B ∩ s), from Open_preimage_inter_of_continuous_on Opens contsf OpenB, have Open (f '- B ∩ t), from Open_preimage_inter_of_continuous_on Opent conttf OpenB, show Open (f '- B ∩ (s ∪ t)), by rewrite [inter_distrib_left]; apply Open_union; assumption; assumption) theorem continuous_on_id (s : set X) : continuous_on (@id X) s := λ B OpB, exists.intro B (and.intro OpB (by rewrite preimage_id)) theorem continuous_on_comp {s : set X} {f : X → Y} {g : Y → Z} (Hf : continuous_on f s) (Hg : continuous_on g (f ' s)) : continuous_on (g ∘ f) s := take t, assume Ot, obtain (u : set Y) [(Ou : Open u) (Hu : u ∩ f ' s = g '- t ∩ f ' s)], from Hg Ot, obtain (v : set X) [(Ov : Open v) (Hv : v ∩ s = f '- u ∩ s)], from Hf Ou, have s ⊆ f '- (f ' s), from subset_preimage_image s f, have f '- (u ∩ f ' s) ∩ s = f '- (g '- t ∩ f ' s) ∩ s, by rewrite Hu, have f '- u ∩ s = f '- (g '- t) ∩ s, begin revert this, rewrite [*preimage_inter, *inter_assoc, *inter_eq_self_of_subset_right `s ⊆ f '- (f ' s)`], intro H, exact H end, show ∃ v, Open v ∧ v ∩ s = (g ∘ f) '- t ∩ s, from exists.intro v (and.intro Ov (eq.trans Hv this)) theorem continuous_on_comp' {s : set X} {t : set Y} {f : X → Y} {g : Y → Z} (Hf : continuous_on f s) (Hg : continuous_on g t) (H : f ' s ⊆ t) : continuous_on (g ∘ f) s := continuous_on_comp Hf (continuous_on_subset Hg H) section open classical theorem continuous_on_singleton (f : X → Y) (x : X) : continuous_on f '{x} := take s, assume Ops, if Hx : x ∈ f '- s then have '{x} ⊆ f '- s, from singleton_subset_of_mem Hx, exists.intro univ (and.intro Open_univ (by rewrite [univ_inter, inter_eq_self_of_subset_right this])) else have f '- s ∩ '{x} = ∅, from eq_empty_of_forall_not_mem (take y, assume ymem, obtain (Hy : y ∈ f '- s) (Hy' : y ∈ '{x}), from ymem, have y = x, from eq_of_mem_singleton Hy', show false, from Hx (by rewrite -this; apply Hy)), exists.intro ∅ (and.intro Open_empty (by rewrite [this, empty_inter])) theorem continuous_on_const (c : Y) (s : set X) : continuous_on (λ x : X, c) s := take s, assume Ops, if cs : c ∈ s then have (λx, c) '- s = @univ X, from eq_univ_of_forall (take x, mem_preimage cs), exists.intro univ (and.intro Open_univ (by rewrite this)) else have (λx, c) '- s = (∅ : set X), from eq_empty_of_forall_not_mem (take x, assume H, cs (mem_of_mem_preimage H)), exists.intro ∅ (and.intro Open_empty (by rewrite this)) end /- pointwise continuity on a set -/ definition continuous_at_on (f : X → Y) (x : X) (s : set X) : Prop := ∀ ⦃t : set Y⦄, Open t → f x ∈ t → ∃ u, Open u ∧ x ∈ u ∧ u ∩ s ⊆ f '- t theorem continuous_at_on_of_continuous_on {f : X → Y} {s : set X} (H : continuous_on f s) ⦃x : X⦄ (xs : x ∈ s) : continuous_at_on f x s := take u, assume (Ou : Open u) (fxu : f x ∈ u), obtain (t : set X) [(Ot : Open t) (Ht : t ∩ s = f '- u ∩ s)], from H Ou, have x ∈ f '- u ∩ s, from and.intro fxu xs, have x ∈ t, by rewrite [-Ht at this]; exact and.left this, exists.intro t (and.intro Ot (and.intro this (by rewrite Ht; apply inter_subset_left))) section open classical theorem continuous_on_of_forall_continuous_at_on {f : X → Y} {s : set X} (H : ∀ x, continuous_at_on f x s) : continuous_on f s := take t, assume Ot : Open t, have H₁ : ∀₀ x ∈ f '- t, ∃ u', Open u' ∧ x ∈ u' ∧ u' ∩ s ⊆ f '- t, from λ x xmem, H x Ot (mem_of_mem_preimage xmem), let u := ⋃₀ {u' | ∃ x (Hx : x ∈ f '- t), u' = some (H₁ Hx) } in have Open u, from Open_sUnion (take u', assume Hu', obtain x (Hx : x ∈ f '- t) (u'eq : u' = some (H₁ Hx)), from Hu', show Open u', by rewrite u'eq; apply and.left (some_spec (H₁ Hx))), have Hu₁ : u ∩ s ⊆ f '- t, from take x, assume Hx, obtain xu xs, from Hx, obtain u' [[x' (Hx' : x' ∈ f '- t) (u'eq : u' = some (H₁ Hx'))] (xu' : x ∈ u')], from xu, have u' ∩ s ⊆ f '- t, by rewrite u'eq; exact and.right (and.right (some_spec (H₁ Hx'))), show x ∈ f '- t, from this (and.intro xu' xs), have Hu₂ : f '- t ∩ s ⊆ u, from take x, assume Hx : x ∈ f '- t ∩ s, obtain xft xs, from Hx, let u' := some (H₁ xft) in have x ∈ u', from and.left (and.right (some_spec (H₁ xft))), show x ∈ u, from exists.intro u' (and.intro (exists.intro x (exists.intro xft rfl)) this), show ∃ u, Open u ∧ u ∩ s = f '- t ∩ s, from exists.intro u (and.intro `Open u` (inter_eq_inter_right Hu₁ Hu₂)) end /- continuity -/ definition continuous (f : X → Y) : Prop := ∀ ⦃s : set Y⦄, Open s → Open (f '- s) theorem continuous_of_continuous_on_univ {f : X → Y} (H : continuous_on f univ) : continuous f := λ s Os, by rewrite [-inter_univ]; exact Open_preimage_inter_of_continuous_on Open_univ H Os theorem continuous_on_of_continuous {f : X → Y} (s : set X) (H : continuous f) : continuous_on f s := take t, assume Ot, exists.intro (f '- t) (and.intro (H Ot) rfl) theorem continuous_on_univ_of_continuous {f : X → Y} (H : continuous f) : continuous_on f univ := continuous_on_of_continuous univ H theorem continuous_iff (f : X → Y) : continuous f ↔ continuous_on f univ := iff.intro continuous_on_univ_of_continuous continuous_of_continuous_on_univ theorem Open_preimage_of_continuous {f : X → Y} (H : continuous f) ⦃s : set Y⦄ (Os : Open s) : Open (f '- s) := H Os theorem closed_preimage_of_continuous {f : X → Y} (H : continuous f) {s : set Y} (cls : closed s) : closed (f '- s) := by rewrite [↑closed, -preimage_compl]; exact H cls theorem continuous_id : continuous (@id X) := λ s Os, Os theorem continuous_comp {f : X → Y} {g : Y → Z} (Hf : continuous f) (Hg : continuous g) : continuous (g ∘ f) := λ s Os, Hf (Hg Os) theorem continuous_const (c : Y) : continuous (λ x : X, c) := continuous_of_continuous_on_univ (continuous_on_const c univ) /- continuity at a point -/ definition continuous_at (f : X → Y) (x : X) : Prop := ∀ ⦃t : set Y⦄, Open t → f x ∈ t → ∃ u, Open u ∧ x ∈ u ∧ u ⊆ f '- t theorem continuous_at_of_continuous_at_on {f : X → Y} {x : X} {s : set X} (Os : Open s) (xs : x ∈ s) (H : continuous_at_on f x s) : continuous_at f x := take t, assume Ot fxt, obtain u Ou xu xssub, from H Ot fxt, exists.intro (u ∩ s) (and.intro (Open_inter Ou Os) (and.intro (and.intro xu xs) xssub)) theorem continuous_at_of_continuous_at_on_univ {f : X → Y} {x : X} (H : continuous_at_on f x univ) : continuous_at f x := continuous_at_of_continuous_at_on Open_univ !mem_univ H theorem continuous_at_on_univ_of_continuous_at {f : X → Y} {x : X} (H : continuous_at f x) : continuous_at_on f x univ := take t, assume Ot fxt, obtain u Ou xu usub, from H Ot fxt, have u ∩ univ ⊆ f '- t, by rewrite inter_univ; apply usub, exists.intro u (and.intro Ou (and.intro xu this)) theorem continuous_at_iff_continuous_at_on_univ (f : X → Y) (x : X) : continuous_at f x ↔ continuous_at_on f x univ := iff.intro continuous_at_on_univ_of_continuous_at continuous_at_of_continuous_at_on_univ /- The Category TOP -/ section TOP open subtype private definition TOP_hom (A B : TopologicalSpace) : Type := {f : A → B | continuous f} private definition TOP_ID {A : TopologicalSpace} : TOP_hom A A := subtype.tag (@id A) continuous_id private definition TOP_comp ⦃ A B C : TopologicalSpace ⦄ (g : TOP_hom B C) (f : TOP_hom A B) : TOP_hom A C := subtype.tag (elt_of g ∘ elt_of f) (continuous_comp (subtype.has_property f) (subtype.has_property g)) private theorem TOP_assoc ⦃A B C D : TopologicalSpace⦄ (h : TOP_hom C D) (g : TOP_hom B C) (f : TOP_hom A B) : TOP_comp h (TOP_comp g f) = TOP_comp (TOP_comp h g) f := subtype.eq rfl private theorem id_left ⦃A B : TopologicalSpace ⦄ (f : TOP_hom A B) : TOP_comp TOP_ID f = f := subtype.eq rfl private theorem id_right ⦃A B : TopologicalSpace ⦄ (f : TOP_hom A B) : TOP_comp f TOP_ID = f := subtype.eq rfl definition TOP [reducible] [trans_instance] : category TopologicalSpace := ⦃ category, hom := TOP_hom, comp := TOP_comp, ID := @TOP_ID, assoc := TOP_assoc, id_left := id_left, id_right := id_right ⦄ end TOP end topology