import macros universe U ≥ 1 variable Bool : Type -- The following builtin declarations can be removed as soon as Lean supports inductive datatypes and match expressions builtin true : Bool builtin false : Bool builtin if {A : (Type U)} : Bool → A → A → A definition TypeU := (Type U) definition not (a : Bool) : Bool := a → false notation 40 ¬ _ : not definition or (a b : Bool) : Bool := ¬ a → b infixr 30 || : or infixr 30 \/ : or infixr 30 ∨ : or definition and (a b : Bool) : Bool := ¬ (a → ¬ b) definition implies (a b : Bool) : Bool := a → b infixr 35 && : and infixr 35 /\ : and infixr 35 ∧ : and definition Exists (A : TypeU) (P : A → Bool) : Bool := ¬ (∀ x : A, ¬ (P x)) definition eq {A : TypeU} (a b : A) : Bool := a == b infix 50 = : eq definition neq {A : TypeU} (a b : A) : Bool := ¬ (a == b) infix 50 ≠ : neq axiom refl {A : TypeU} (a : A) : a == a axiom subst {A : TypeU} {a b : A} {P : A → Bool} (H1 : P a) (H2 : a == b) : P b axiom iff::intro {a b : Bool} (H1 : a → b) (H2 : b → a) : a == b axiom abst {A : TypeU} {B : A → TypeU} {f g : ∀ x : A, B x} (H : ∀ x : A, f x == g x) : f == g axiom abstpi {A : TypeU} {B C : A → TypeU} (H : ∀ x : A, B x == C x) : (∀ x : A, B x) == (∀ x : A, C x) axiom eta {A : TypeU} {B : A → TypeU} (f : ∀ x : A, B x) : (λ x : A, f x) == f axiom case (P : Bool → Bool) (H1 : P true) (H2 : P false) (a : Bool) : P a -- Alias for subst where we can provide P explicitly, but keep A,a,b implicit definition substp {A : TypeU} {a b : A} (P : A → Bool) (H1 : P a) (H2 : a == b) : P b := subst H1 H2 theorem trivial : true := refl true theorem em (a : Bool) : a ∨ ¬ a := case (λ x, x ∨ ¬ x) trivial trivial a theorem false::elim (a : Bool) (H : false) : a := case (λ x, x) trivial H a theorem absurd {a : Bool} (H1 : a) (H2 : ¬ a) : false := H2 H1 theorem eqmp {a b : Bool} (H1 : a == b) (H2 : a) : b := subst H2 H1 infixl 100 <| : eqmp infixl 100 ◂ : eqmp -- assume is a 'macro' that expands into a discharge theorem imp::trans {a b c : Bool} (H1 : a → b) (H2 : b → c) : a → c := λ Ha, H2 (H1 Ha) theorem imp::eq::trans {a b c : Bool} (H1 : a → b) (H2 : b == c) : a → c := λ Ha, H2 ◂ (H1 Ha) theorem eq::imp::trans {a b c : Bool} (H1 : a == b) (H2 : b → c) : a → c := λ Ha, H2 (H1 ◂ Ha) theorem not::not::eq (a : Bool) : (¬ ¬ a) == a := case (λ x, (¬ ¬ x) == x) trivial trivial a theorem not::not::elim {a : Bool} (H : ¬ ¬ a) : a := (not::not::eq a) ◂ H theorem mt {a b : Bool} (H1 : a → b) (H2 : ¬ b) : ¬ a := λ Ha, absurd (H1 Ha) H2 theorem contrapos {a b : Bool} (H : a → b) : ¬ b → ¬ a := λ Hnb : ¬ b, mt H Hnb theorem absurd::elim {a : Bool} (b : Bool) (H1 : a) (H2 : ¬ a) : b := false::elim b (absurd H1 H2) theorem not::imp::eliml {a b : Bool} (Hnab : ¬ (a → b)) : a := not::not::elim (have ¬ ¬ a : λ Hna : ¬ a, absurd (have a → b : λ Ha : a, absurd::elim b Ha Hna) Hnab) theorem not::imp::elimr {a b : Bool} (H : ¬ (a → b)) : ¬ b := λ Hb : b, absurd (have a → b : λ Ha : a, Hb) (have ¬ (a → b) : H) theorem resolve1 {a b : Bool} (H1 : a ∨ b) (H2 : ¬ a) : b := H1 H2 -- Remark: conjunction is defined as ¬ (a → ¬ b) in Lean theorem and::intro {a b : Bool} (H1 : a) (H2 : b) : a ∧ b := λ H : a → ¬ b, absurd H2 (H H1) theorem and::eliml {a b : Bool} (H : a ∧ b) : a := not::imp::eliml H theorem and::elimr {a b : Bool} (H : a ∧ b) : b := not::not::elim (not::imp::elimr H) -- Remark: disjunction is defined as ¬ a → b in Lean theorem or::introl {a : Bool} (H : a) (b : Bool) : a ∨ b := λ H1 : ¬ a, absurd::elim b H H1 theorem or::intror {b : Bool} (a : Bool) (H : b) : a ∨ b := λ H1 : ¬ a, H theorem or::elim {a b c : Bool} (H1 : a ∨ b) (H2 : a → c) (H3 : b → c) : c := not::not::elim (λ H : ¬ c, absurd (have c : H3 (have b : resolve1 H1 (have ¬ a : (mt (λ Ha : a, H2 Ha) H)))) H) theorem refute {a : Bool} (H : ¬ a → false) : a := or::elim (em a) (λ H1 : a, H1) (λ H1 : ¬ a, false::elim a (H H1)) theorem symm {A : TypeU} {a b : A} (H : a == b) : b == a := subst (refl a) H theorem trans {A : TypeU} {a b c : A} (H1 : a == b) (H2 : b == c) : a == c := subst H1 H2 infixl 100 ⋈ : trans theorem ne::symm {A : TypeU} {a b : A} (H : a ≠ b) : b ≠ a := λ H1 : b = a, H (symm H1) theorem eq::ne::trans {A : TypeU} {a b c : A} (H1 : a = b) (H2 : b ≠ c) : a ≠ c := subst H2 (symm H1) theorem ne::eq::trans {A : TypeU} {a b c : A} (H1 : a ≠ b) (H2 : b = c) : a ≠ c := subst H1 H2 theorem eqt::elim {a : Bool} (H : a == true) : a := (symm H) ◂ trivial theorem eqt::intro {a : Bool} (H : a) : a == true := iff::intro (λ H1 : a, trivial) (λ H2 : true, H) theorem congr1 {A : TypeU} {B : A → TypeU} {f g : ∀ x : A, B x} (a : A) (H : f == g) : f a == g a := substp (fun h : (∀ x : A, B x), f a == h a) (refl (f a)) H -- Remark: we must use heterogeneous equality in the following theorem because the types of (f a) and (f b) -- are not "definitionally equal" They are (B a) and (B b) -- They are provably equal, we just have to apply Congr1 theorem congr2 {A : TypeU} {B : A → TypeU} {a b : A} (f : ∀ x : A, B x) (H : a == b) : f a == f b := substp (fun x : A, f a == f x) (refl (f a)) H -- Remark: like the previous theorem we use heterogeneous equality We cannot use Trans theorem -- because the types are not definitionally equal theorem congr {A : TypeU} {B : A → TypeU} {f g : ∀ x : A, B x} {a b : A} (H1 : f == g) (H2 : a == b) : f a == g b := subst (congr2 f H2) (congr1 b H1) -- Remark: the existential is defined as (¬ (forall x : A, ¬ P x)) theorem exists::elim {A : TypeU} {P : A → Bool} {B : Bool} (H1 : Exists A P) (H2 : ∀ (a : A) (H : P a), B) : B := refute (λ R : ¬ B, absurd (λ a : A, mt (λ H : P a, H2 a H) R) H1) theorem exists::intro {A : TypeU} {P : A → Bool} (a : A) (H : P a) : Exists A P := λ H1 : (∀ x : A, ¬ P x), absurd H (H1 a) -- At this point, we have proved the theorems we need using the -- definitions of forall, exists, and, or, =>, not We mark (some of) -- them as opaque Opaque definitions improve performance, and -- effectiveness of Lean's elaborator theorem or::comm (a b : Bool) : (a ∨ b) == (b ∨ a) := iff::intro (λ H, or::elim H (λ H1, or::intror b H1) (λ H2, or::introl H2 a)) (λ H, or::elim H (λ H1, or::intror a H1) (λ H2, or::introl H2 b)) theorem or::assoc (a b c : Bool) : ((a ∨ b) ∨ c) == (a ∨ (b ∨ c)) := iff::intro (λ H : (a ∨ b) ∨ c, or::elim H (λ H1 : a ∨ b, or::elim H1 (λ Ha : a, or::introl Ha (b ∨ c)) (λ Hb : b, or::intror a (or::introl Hb c))) (λ Hc : c, or::intror a (or::intror b Hc))) (λ H : a ∨ (b ∨ c), or::elim H (λ Ha : a, (or::introl (or::introl Ha b) c)) (λ H1 : b ∨ c, or::elim H1 (λ Hb : b, or::introl (or::intror a Hb) c) (λ Hc : c, or::intror (a ∨ b) Hc))) theorem or::id (a : Bool) : (a ∨ a) == a := iff::intro (λ H, or::elim H (λ H1, H1) (λ H2, H2)) (λ H, or::introl H a) theorem or::falsel (a : Bool) : (a ∨ false) == a := iff::intro (λ H, or::elim H (λ H1, H1) (λ H2, false::elim a H2)) (λ H, or::introl H false) theorem or::falser (a : Bool) : (false ∨ a) == a := (or::comm false a) ⋈ (or::falsel a) theorem or::truel (a : Bool) : (true ∨ a) == true := eqt::intro (case (λ x : Bool, true ∨ x) trivial trivial a) theorem or::truer (a : Bool) : (a ∨ true) == true := (or::comm a true) ⋈ (or::truel a) theorem or::tauto (a : Bool) : (a ∨ ¬ a) == true := eqt::intro (em a) theorem and::comm (a b : Bool) : (a ∧ b) == (b ∧ a) := iff::intro (λ H, and::intro (and::elimr H) (and::eliml H)) (λ H, and::intro (and::elimr H) (and::eliml H)) theorem and::id (a : Bool) : (a ∧ a) == a := iff::intro (λ H, and::eliml H) (λ H, and::intro H H) theorem and::assoc (a b c : Bool) : ((a ∧ b) ∧ c) == (a ∧ (b ∧ c)) := iff::intro (λ H, and::intro (and::eliml (and::eliml H)) (and::intro (and::elimr (and::eliml H)) (and::elimr H))) (λ H, and::intro (and::intro (and::eliml H) (and::eliml (and::elimr H))) (and::elimr (and::elimr H))) theorem and::truer (a : Bool) : (a ∧ true) == a := iff::intro (λ H : a ∧ true, and::eliml H) (λ H : a, and::intro H trivial) theorem and::truel (a : Bool) : (true ∧ a) == a := trans (and::comm true a) (and::truer a) theorem and::falsel (a : Bool) : (a ∧ false) == false := iff::intro (λ H, and::elimr H) (λ H, false::elim (a ∧ false) H) theorem and::falser (a : Bool) : (false ∧ a) == false := (and::comm false a) ⋈ (and::falsel a) theorem and::absurd (a : Bool) : (a ∧ ¬ a) == false := iff::intro (λ H, absurd (and::eliml H) (and::elimr H)) (λ H, false::elim (a ∧ ¬ a) H) theorem not::true : (¬ true) == false := trivial theorem not::false : (¬ false) == true := trivial theorem not::and (a b : Bool) : (¬ (a ∧ b)) == (¬ a ∨ ¬ b) := case (λ x, (¬ (x ∧ b)) == (¬ x ∨ ¬ b)) (case (λ y, (¬ (true ∧ y)) == (¬ true ∨ ¬ y)) trivial trivial b) (case (λ y, (¬ (false ∧ y)) == (¬ false ∨ ¬ y)) trivial trivial b) a theorem not::and::elim {a b : Bool} (H : ¬ (a ∧ b)) : ¬ a ∨ ¬ b := (not::and a b) ◂ H theorem not::or (a b : Bool) : (¬ (a ∨ b)) == (¬ a ∧ ¬ b) := case (λ x, (¬ (x ∨ b)) == (¬ x ∧ ¬ b)) (case (λ y, (¬ (true ∨ y)) == (¬ true ∧ ¬ y)) trivial trivial b) (case (λ y, (¬ (false ∨ y)) == (¬ false ∧ ¬ y)) trivial trivial b) a theorem not::or::elim {a b : Bool} (H : ¬ (a ∨ b)) : ¬ a ∧ ¬ b := (not::or a b) ◂ H theorem not::iff (a b : Bool) : (¬ (a == b)) == ((¬ a) == b) := case (λ x, (¬ (x == b)) == ((¬ x) == b)) (case (λ y, (¬ (true == y)) == ((¬ true) == y)) trivial trivial b) (case (λ y, (¬ (false == y)) == ((¬ false) == y)) trivial trivial b) a theorem not::iff::elim {a b : Bool} (H : ¬ (a == b)) : (¬ a) == b := (not::iff a b) ◂ H theorem not::implies (a b : Bool) : (¬ (a → b)) == (a ∧ ¬ b) := case (λ x, (¬ (x → b)) == (x ∧ ¬ b)) (case (λ y, (¬ (true → y)) == (true ∧ ¬ y)) trivial trivial b) (case (λ y, (¬ (false → y)) == (false ∧ ¬ y)) trivial trivial b) a theorem not::implies::elim {a b : Bool} (H : ¬ (a → b)) : a ∧ ¬ b := (not::implies a b) ◂ H theorem not::congr {a b : Bool} (H : a == b) : (¬ a) == (¬ b) := congr2 not H theorem eq::exists::intro {A : (Type U)} {P Q : A → Bool} (H : ∀ x : A, P x == Q x) : (∃ x : A, P x) == (∃ x : A, Q x) := congr2 (Exists A) (abst H) theorem not::forall (A : (Type U)) (P : A → Bool) : (¬ (∀ x : A, P x)) == (∃ x : A, ¬ P x) := calc (¬ ∀ x : A, P x) = (¬ ∀ x : A, ¬ ¬ P x) : not::congr (abstpi (λ x : A, symm (not::not::eq (P x)))) ... = (∃ x : A, ¬ P x) : refl (∃ x : A, ¬ P x) theorem not::forall::elim {A : (Type U)} {P : A → Bool} (H : ¬ (∀ x : A, P x)) : ∃ x : A, ¬ P x := (not::forall A P) ◂ H theorem not::exists (A : (Type U)) (P : A → Bool) : (¬ ∃ x : A, P x) == (∀ x : A, ¬ P x) := calc (¬ ∃ x : A, P x) = (¬ ¬ ∀ x : A, ¬ P x) : refl (¬ ∃ x : A, P x) ... = (∀ x : A, ¬ P x) : not::not::eq (∀ x : A, ¬ P x) theorem not::exists::elim {A : (Type U)} {P : A → Bool} (H : ¬ ∃ x : A, P x) : ∀ x : A, ¬ P x := (not::exists A P) ◂ H theorem exists::unfold1 {A : TypeU} {P : A → Bool} (a : A) (H : ∃ x : A, P x) : P a ∨ (∃ x : A, x ≠ a ∧ P x) := exists::elim H (λ (w : A) (H1 : P w), or::elim (em (w = a)) (λ Heq : w = a, or::introl (subst H1 Heq) (∃ x : A, x ≠ a ∧ P x)) (λ Hne : w ≠ a, or::intror (P a) (exists::intro w (and::intro Hne H1)))) theorem exists::unfold2 {A : TypeU} {P : A → Bool} (a : A) (H : P a ∨ (∃ x : A, x ≠ a ∧ P x)) : ∃ x : A, P x := or::elim H (λ H1 : P a, exists::intro a H1) (λ H2 : (∃ x : A, x ≠ a ∧ P x), exists::elim H2 (λ (w : A) (Hw : w ≠ a ∧ P w), exists::intro w (and::elimr Hw))) theorem exists::unfold {A : TypeU} (P : A → Bool) (a : A) : (∃ x : A, P x) = (P a ∨ (∃ x : A, x ≠ a ∧ P x)) := iff::intro (λ H : (∃ x : A, P x), exists::unfold1 a H) (λ H : (P a ∨ (∃ x : A, x ≠ a ∧ P x)), exists::unfold2 a H) set::opaque exists true set::opaque not true set::opaque or true set::opaque and true