import Int. variable P : Int -> Int -> Bool set::opaque exists false. theorem T1 (R1 : not (exists x y, P x y)) : forall x y, not (P x y) := fun a b, not::not::elim (not::not::elim R1 a) b axiom Ax : forall x, exists y, P x y theorem T2 : exists x y, P x y := refute (fun R : not (exists x y, P x y), let L1 : forall x y, not (P x y) := fun a b, (not::not::elim ((not::not::elim R) a)) b, L2 : exists y, P 0 y := Ax 0 in exists::elim L2 (fun (w : Int) (H : P 0 w), absurd H (L1 0 w))). theorem T3 (A : (Type U)) (P : A -> A -> Bool) (a : A) (H1 : forall x, exists y, P x y) : exists x y, P x y := refute (fun R : not (exists x y, P x y), let L1 : forall x y, not (P x y) := fun a b, (not::not::elim ((not::not::elim R) a)) b, L2 : exists y, P a y := H1 a in exists::elim L2 (fun (w : A) (H : P a w), absurd H (L1 a w))).