/- Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura Parity -/ import data.nat.div logic.identities namespace nat open decidable definition even (n : nat) := n mod 2 = 0 definition decidable_even [instance] : ∀ n, decidable (even n) := λ n, !nat.has_decidable_eq definition odd (n : nat) := ¬even n definition decidable_odd [instance] : ∀ n, decidable (odd n) := λ n, decidable_not lemma not_odd_zero : ¬ odd 0 := dec_trivial lemma even_zero : even 0 := dec_trivial lemma odd_one : odd 1 := dec_trivial lemma not_even_one : ¬ even 1 := dec_trivial lemma odd_eq_not_even : ∀ n, odd n = ¬ even n := λ n, rfl lemma odd_iff_not_even : ∀ n, odd n ↔ ¬ even n := λ n, !iff.refl lemma odd_of_not_even : ∀ {n}, ¬ even n → odd n := λ n h, iff.mp' !odd_iff_not_even h lemma even_of_not_odd : ∀ {n}, ¬ odd n → even n := λ n h, not_not_elim (iff.mp (not_iff_not_of_iff !odd_iff_not_even) h) lemma not_odd_of_even : ∀ {n}, even n → ¬ odd n := λ n h, iff.mp' (not_iff_not_of_iff !odd_iff_not_even) (not_not_intro h) lemma not_even_of_odd : ∀ {n}, odd n → ¬ even n := λ n h, iff.mp !odd_iff_not_even h lemma odd_succ_of_even : ∀ {n}, even n → odd (succ n) := begin intro n, esimp [even, odd], intro h, rewrite [-add_one], have h₁ : n mod 2 = 0 mod 2, from h, have h₂ : (n+1) mod 2 = 1, from add_mod_eq_add_mod_right 1 h₁, rewrite h₂, contradiction end lemma even_succ_of_odd : ∀ {n}, odd n → even (succ n) := begin intro n, esimp [even, odd], intro h, rewrite [-add_one], have h₁ : n mod 2 < 2, from mod_lt n dec_trivial, have h₂ : n mod 2 = 1, begin revert h h₁, generalize (n mod 2), intro x, cases x, {intro h', exact absurd rfl h'}, cases a, {intros, reflexivity}, {intro h hl, exact absurd (lt_of_succ_lt_succ (lt_of_succ_lt_succ hl)) !not_lt_zero} end, have h₃ : n mod 2 = 1 mod 2, from h₂, have h₄ : (n+1) mod 2 = 0, from add_mod_eq_add_mod_right 1 h₃, rewrite h₄ end lemma odd_succ_succ_of_odd : ∀ {n}, odd n → odd (succ (succ n)) := λ n h, odd_succ_of_even (even_succ_of_odd h) lemma even_succ_succ_of_even : ∀ {n}, even n → even (succ (succ n)) := λ n h, even_succ_of_odd (odd_succ_of_even h) lemma even_of_odd_succ : ∀ {n}, odd (succ n) → even n := λ n h, by_contradiction (λ he, have h₁ : odd n, from odd_of_not_even he, have h₂ : even (succ n), from even_succ_of_odd h₁, absurd h₂ (not_even_of_odd h)) lemma odd_of_even_succ : ∀ {n}, even (succ n) → odd n := λ n h, by_contradiction (λ he, have h₁ : even n, from even_of_not_odd he, have h₂ : odd (succ n), from odd_succ_of_even h₁, absurd h (not_even_of_odd h₂)) lemma even_of_even_succ_succ : ∀ {n}, even (succ (succ n)) → even n := λ n h, even_of_odd_succ (odd_of_even_succ h) lemma odd_of_odd_succ_succ : ∀ {n}, odd (succ (succ n)) → odd n := λ n h, odd_of_even_succ (even_of_odd_succ h) lemma even_or_odd : ∀ n, even n ∨ odd n | 0 := or.inl even_zero | (succ n) := or.elim (even_or_odd n) (λ h : even n, or.inr (odd_succ_of_even h)) (λ h : odd n, or.inl (even_succ_of_odd h)) lemma exists_of_even : ∀ {n}, even n → ∃ k, n = 2*k | 0 h := exists.intro 0 rfl | 1 h := absurd h not_even_one | (n+2) h := obtain k (hk : n = 2*k), from exists_of_even (even_of_even_succ_succ h), begin existsi (k+1), subst n end lemma exists_of_odd : ∀ {n}, odd n → ∃ k, n = 2*k + 1 | 0 h := absurd h not_odd_zero | 1 h := exists.intro 0 rfl | (n+2) h := obtain k (hk : n = 2*k+1), from exists_of_odd (odd_of_odd_succ_succ h), begin existsi (k+1), subst n end lemma even_of_exists : ∀ {n}, (∃ k, n = 2 * k) → even n | 0 h := even_zero | 1 h := obtain k (hk : 1 = 2 * k), from h, assert h₁ : 1 mod 2 = (2*k) mod 2, by rewrite hk, begin rewrite mul_mod_right at h₁, contradiction end | (n+2) h := obtain k (hk : n + 2 = 2*k), from h, have hk₁ : n = 2*(k - 1), from calc n = 2*k - 2 : eq_sub_of_add_eq hk ... = 2*(k - 1) : by rewrite mul_sub_left_distrib, have ih : even n, from even_of_exists (exists.intro (k-1) hk₁), even_succ_succ_of_even ih lemma odd_of_exists {n} : (∃ k, n = 2 * k + 1) → odd n := λ h, by_contradiction (λ hn, have h₁ : even n, from even_of_not_odd hn, have h₂ : ∃ k, n = 2 * k, from exists_of_even h₁, obtain k₁ (hk₁ : n = 2 * k₁ + 1), from h, obtain k₂ (hk₂ : n = 2 * k₂), from h₂, assert h₃ : (2 * k₁ + 1) mod 2 = (2 * k₂) mod 2, by rewrite [-hk₁, -hk₂], begin rewrite [mul_mod_right at h₃, add.comm at h₃, add_mul_mod_self_left at h₃], contradiction end) lemma even_add_of_even_of_even {n m} : even n → even m → even (n+m) := λ h₁ h₂, obtain k₁ (hk₁ : n = 2 * k₁), from exists_of_even h₁, obtain k₂ (hk₂ : m = 2 * k₂), from exists_of_even h₂, even_of_exists (exists.intro (k₁+k₂) (by rewrite [hk₁, hk₂, mul.left_distrib])) lemma even_add_of_odd_of_odd {n m} : odd n → odd m → even (n+m) := λ h₁ h₂, assert h₃ : even (succ n + succ m), from even_add_of_even_of_even (even_succ_of_odd h₁) (even_succ_of_odd h₂), have h₄ : even(succ (succ (n + m))), by rewrite [add_succ at h₃, succ_add at h₃]; exact h₃, even_of_even_succ_succ h₄ lemma odd_add_of_even_of_odd {n m} : even n → odd m → odd (n+m) := λ h₁ h₂, assert h₃ : even (n + succ m), from even_add_of_even_of_even h₁ (even_succ_of_odd h₂), odd_of_even_succ h₃ lemma odd_add_of_odd_of_even {n m} : odd n → even m → odd (n+m) := λ h₁ h₂, assert h₃ : odd (m+n), from odd_add_of_even_of_odd h₂ h₁, by rewrite add.comm at h₃; exact h₃ lemma even_mul_of_even_left {n} (m) : even n → even (n*m) := λ h, obtain k (hk : n = 2*k), from exists_of_even h, even_of_exists (exists.intro (k*m) (by rewrite [hk, mul.assoc])) lemma even_mul_of_even_right {n} (m) : even n → even (m*n) := λ h₁, assert h₂ : even (n*m), from even_mul_of_even_left _ h₁, by rewrite mul.comm at h₂; exact h₂ lemma odd_mul_of_odd_of_odd {n m} : odd n → odd m → odd (n*m) := λ h₁ h₂, assert h₃ : even (n * succ m), from even_mul_of_even_right _ (even_succ_of_odd h₂), assert h₄ : even (n * m + n), by rewrite mul_succ at h₃; exact h₃, by_contradiction (λ hn, assert h₅ : even (n*m), from even_of_not_odd hn, absurd h₄ (not_even_of_odd (odd_add_of_even_of_odd h₅ h₁))) end nat