/- Copyright (c) 2014 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Floris van Doorn Theorems about W-types (well-founded trees) -/ import .sigma .pi open eq sigma sigma.ops equiv is_equiv -- TODO fix universe levels exit inductive Wtype.{l k} {A : Type.{l}} (B : A → Type.{k}) := sup : Π (a : A), (B a → Wtype.{l k} B) → Wtype.{l k} B namespace Wtype notation `W` binders `,` r:(scoped B, Wtype B) := r universe variables u v variables {A A' : Type.{u}} {B B' : A → Type.{v}} {C : Π(a : A), B a → Type} {a a' : A} {f : B a → W a, B a} {f' : B a' → W a, B a} {w w' : W(a : A), B a} protected definition pr1 (w : W(a : A), B a) : A := Wtype.rec_on w (λa f IH, a) protected definition pr2 (w : W(a : A), B a) : B (pr1 w) → W(a : A), B a := Wtype.rec_on w (λa f IH, f) namespace ops postfix `.1`:(max+1) := Wtype.pr1 postfix `.2`:(max+1) := Wtype.pr2 notation `⟨` a `,` f `⟩`:0 := Wtype.sup a f --input ⟨ ⟩ as \< \> end ops open ops protected definition eta (w : W a, B a) : ⟨w.1 , w.2⟩ = w := cases_on w (λa f, idp) definition sup_eq_sup (p : a = a') (q : p ▹ f = f') : ⟨a, f⟩ = ⟨a', f'⟩ := path.rec_on p (λf' q, path.rec_on q idp) f' q protected definition Wtype_eq (p : w.1 = w'.1) (q : p ▹ w.2 = w'.2) : w = w' := cases_on w (λw1 w2, cases_on w' (λ w1' w2', sup_eq_sup)) p q protected definition Wtype_eq_pr1 (p : w = w') : w.1 = w'.1 := path.rec_on p idp protected definition Wtype_eq_pr2 (p : w = w') : Wtype_eq_pr1 p ▹ w.2 = w'.2 := path.rec_on p idp namespace ops postfix `..1`:(max+1) := Wtype_eq_pr1 postfix `..2`:(max+1) := Wtype_eq_pr2 end ops open ops definition sup_path_W (p : w.1 = w'.1) (q : p ▹ w.2 = w'.2) : dpair (Wtype_eq p q)..1 (Wtype_eq p q)..2 = dpair p q := begin reverts (p, q), apply (cases_on w), intros (w1, w2), apply (cases_on w'), intros (w1', w2', p), generalize w2', --change to revert apply (path.rec_on p), intros (w2', q), apply (path.rec_on q), apply idp end definition pr1_path_W (p : w.1 = w'.1) (q : p ▹ w.2 = w'.2) : (Wtype_eq p q)..1 = p := (!sup_path_W)..1 definition pr2_path_W (p : w.1 = w'.1) (q : p ▹ w.2 = w'.2) : pr1_path_W p q ▹ (Wtype_eq p q)..2 = q := (!sup_path_W)..2 definition eta_path_W (p : w = w') : Wtype_eq (p..1) (p..2) = p := begin apply (path.rec_on p), apply (cases_on w), intros (w1, w2), apply idp end definition transport_pr1_path_W {B' : A → Type} (p : w.1 = w'.1) (q : p ▹ w.2 = w'.2) : transport (λx, B' x.1) (Wtype_eq p q) = transport B' p := begin reverts (p, q), apply (cases_on w), intros (w1, w2), apply (cases_on w'), intros (w1', w2', p), generalize w2', apply (path.rec_on p), intros (w2', q), apply (path.rec_on q), apply idp end definition path_W_uncurried (pq : Σ(p : w.1 = w'.1), p ▹ w.2 = w'.2) : w = w' := destruct pq Wtype_eq definition sup_path_W_uncurried (pq : Σ(p : w.1 = w'.1), p ▹ w.2 = w'.2) : dpair (path_W_uncurried pq)..1 (path_W_uncurried pq)..2 = pq := destruct pq sup_path_W definition pr1_path_W_uncurried (pq : Σ(p : w.1 = w'.1), p ▹ w.2 = w'.2) : (path_W_uncurried pq)..1 = pq.1 := (!sup_path_W_uncurried)..1 definition pr2_path_W_uncurried (pq : Σ(p : w.1 = w'.1), p ▹ w.2 = w'.2) : (pr1_path_W_uncurried pq) ▹ (path_W_uncurried pq)..2 = pq.2 := (!sup_path_W_uncurried)..2 definition eta_path_W_uncurried (p : w = w') : path_W_uncurried (dpair p..1 p..2) = p := !eta_path_W definition transport_pr1_path_W_uncurried {B' : A → Type} (pq : Σ(p : w.1 = w'.1), p ▹ w.2 = w'.2) : transport (λx, B' x.1) (@path_W_uncurried A B w w' pq) = transport B' pq.1 := destruct pq transport_pr1_path_W definition isequiv_path_W /-[instance]-/ (w w' : W a, B a) : is_equiv (@path_W_uncurried A B w w') := adjointify path_W_uncurried (λp, dpair (p..1) (p..2)) eta_path_W_uncurried sup_path_W_uncurried definition equiv_path_W (w w' : W a, B a) : (Σ(p : w.1 = w'.1), p ▹ w.2 = w'.2) ≃ (w = w') := equiv.mk path_W_uncurried !isequiv_path_W definition double_induction_on {P : (W a, B a) → (W a, B a) → Type} (w w' : W a, B a) (H : ∀ (a a' : A) (f : B a → W a, B a) (f' : B a' → W a, B a), (∀ (b : B a) (b' : B a'), P (f b) (f' b')) → P (sup a f) (sup a' f')) : P w w' := begin revert w', apply (rec_on w), intros (a, f, IH, w'), apply (cases_on w'), intros (a', f'), apply H, intros (b, b'), apply IH end /- truncatedness -/ open truncation definition trunc_W [instance] [FUN : funext.{v (max 1 u v)}] (n : trunc_index) [HA : is_trunc (n.+1) A] : is_trunc (n.+1) (W a, B a) := begin fapply is_trunc_succ, intros (w, w'), apply (double_induction_on w w'), intros (a, a', f, f', IH), fapply is_trunc_equiv_closed, apply equiv_path_W, apply is_trunc_sigma, fapply (is_trunc_eq n), intro p, revert IH, generalize f', --change to revert after simpl apply (path.rec_on p), intros (f', IH), apply pi.is_trunc_eq_pi, intro b, apply IH end end Wtype