/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn -/ import algebra.category.constructions function arity open category functor nat_trans eq is_trunc iso equiv prod trunc function pi is_equiv namespace category variables {C D : Precategory} {F : C ⇒ D} {G : D ⇒ C} -- TODO: define a structure "adjoint" and then define -- structure is_left_adjoint (F : C ⇒ D) := -- (G : D ⇒ C) -- G -- (is_adjoint : adjoint F G) structure is_left_adjoint [class] (F : C ⇒ D) := (G : D ⇒ C) (η : 1 ⟹ G ∘f F) (ε : F ∘f G ⟹ 1) (H : Π(c : C), (ε (F c)) ∘ (F (η c)) = ID (F c)) (K : Π(d : D), (G (ε d)) ∘ (η (G d)) = ID (G d)) abbreviation right_adjoint := @is_left_adjoint.G abbreviation unit := @is_left_adjoint.η abbreviation counit := @is_left_adjoint.ε structure is_equivalence [class] (F : C ⇒ D) extends is_left_adjoint F := mk' :: (is_iso_unit : is_iso η) (is_iso_counit : is_iso ε) abbreviation inverse := @is_equivalence.G postfix `⁻¹` := inverse --a second notation for the inverse, which is not overloaded postfix [parsing-only] `⁻¹F`:std.prec.max_plus := inverse --TODO: review and change definition faithful [class] (F : C ⇒ D) := Π⦃c c' : C⦄ ⦃f f' : c ⟶ c'⦄, F f = F f' → f = f' definition full [class] (F : C ⇒ D) := Π⦃c c' : C⦄, is_surjective (@(to_fun_hom F) c c') definition fully_faithful [class] (F : C ⇒ D) := Π(c c' : C), is_equiv (@(to_fun_hom F) c c') definition split_essentially_surjective [class] (F : C ⇒ D) := Π(d : D), Σ(c : C), F c ≅ d definition essentially_surjective [class] (F : C ⇒ D) := Π(d : D), ∃(c : C), F c ≅ d definition is_weak_equivalence [class] (F : C ⇒ D) := fully_faithful F × essentially_surjective F definition is_isomorphism [class] (F : C ⇒ D) := fully_faithful F × is_equiv (to_fun_ob F) structure equivalence (C D : Precategory) := (to_functor : C ⇒ D) (struct : is_equivalence to_functor) structure isomorphism (C D : Precategory) := (to_functor : C ⇒ D) (struct : is_isomorphism to_functor) -- infix `⊣`:55 := adjoint infix `⋍`:25 := equivalence -- \backsimeq or \equiv infix `≌`:25 := isomorphism -- \backcong or \iso definition is_equiv_of_fully_faithful [instance] (F : C ⇒ D) [H : fully_faithful F] (c c' : C) : is_equiv (@(to_fun_hom F) c c') := !H definition is_iso_unit [instance] (F : C ⇒ D) [H : is_equivalence F] : is_iso (unit F) := !is_equivalence.is_iso_unit definition is_iso_counit [instance] (F : C ⇒ D) [H : is_equivalence F] : is_iso (counit F) := !is_equivalence.is_iso_counit -- theorem is_hprop_is_left_adjoint {C : Category} {D : Precategory} (F : C ⇒ D) -- : is_hprop (is_left_adjoint F) := -- begin -- apply is_hprop.mk, -- intro G G', cases G with G η ε H K, cases G' with G' η' ε' H' K', -- assert lem : Π(p : G = G'), p ▸ η = η' → p ▸ ε = ε' -- → is_left_adjoint.mk G η ε H K = is_left_adjoint.mk G' η' ε' H' K', -- { intros p q r, induction p, induction q, induction r, esimp, -- apply apd011 (is_left_adjoint.mk G η ε) !is_hprop.elim !is_hprop.elim}, -- fapply lem, -- { fapply functor.eq_of_pointwise_iso, -- { fapply change_natural_map, -- { exact (G' ∘fn1 ε) ∘n !assoc_natural_rev ∘n (η' ∘1nf G)}, -- { intro d, exact (G' (ε d) ∘ η' (G d))}, -- { intro d, exact ap (λx, _ ∘ x) !id_left}}, -- { intro d, fconstructor, -- { exact (G (ε' d) ∘ η (G' d))}, -- { krewrite [▸*,assoc,-assoc (G (ε' d))], -- krewrite [nf_fn_eq_fn_nf_pt' G' ε η d], -- krewrite [assoc,-assoc], -- rewrite [↑functor.compose, -respect_comp G], -- krewrite [nf_fn_eq_fn_nf_pt ε ε' d,nf_fn_eq_fn_nf_pt η' η (G d),▸*], -- rewrite [respect_comp G], -- krewrite [assoc,-assoc (G (ε d))], -- rewrite [↑functor.compose, -respect_comp G], -- krewrite [H' (G d)], -- rewrite [respect_id,id_right], -- apply K}, -- { krewrite [▸*,assoc,-assoc (G' (ε d))], -- krewrite [nf_fn_eq_fn_nf_pt' G ε' η' d], -- krewrite [assoc,-assoc], -- rewrite [↑functor.compose, -respect_comp G'], -- krewrite [nf_fn_eq_fn_nf_pt ε' ε d,nf_fn_eq_fn_nf_pt η η' (G' d),▸*], -- rewrite [respect_comp G'], -- krewrite [assoc,-assoc (G' (ε' d))], -- rewrite [↑functor.compose, -respect_comp G'], -- krewrite [H (G' d)], -- rewrite [respect_id,id_right], -- apply K'}}}, -- { clear lem, refine transport_hom_of_eq_right _ η ⬝ _, -- krewrite hom_of_eq_compose_right, -- rewrite functor.hom_of_eq_eq_of_pointwise_iso, -- apply nat_trans_eq, intro c, esimp, -- refine !assoc⁻¹ ⬝ ap (λx, _ ∘ x) (nf_fn_eq_fn_nf_pt η η' c) ⬝ !assoc ⬝ _, -- rewrite [▸*,-respect_comp G',H c,respect_id G',id_left]}, -- { clear lem, refine transport_hom_of_eq_left _ ε ⬝ _, -- krewrite inv_of_eq_compose_left, -- rewrite functor.inv_of_eq_eq_of_pointwise_iso, -- apply nat_trans_eq, intro d, esimp, -- rewrite [respect_comp,assoc,nf_fn_eq_fn_nf_pt ε' ε d,-assoc,▸*,H (G' d),id_right]}, -- end definition full_of_fully_faithful (H : fully_faithful F) : full F := λc c', is_surjective.mk (λg, tr (fiber.mk ((@(to_fun_hom F) c c')⁻¹ᶠ g) !right_inv)) definition faithful_of_fully_faithful (H : fully_faithful F) : faithful F := λc c' f f' p, is_injective_of_is_embedding p definition fully_faithful_of_full_of_faithful (H : faithful F) (K : full F) : fully_faithful F := begin intro c c', apply is_equiv_of_is_surjective_of_is_embedding, { apply is_embedding_of_is_injective, intros f f' p, exact H p}, { apply K} end definition split_essentially_surjective_of_is_equivalence (F : C ⇒ D) [H : is_equivalence F] : split_essentially_surjective F := begin intro d, fconstructor, { exact F⁻¹ d}, { exact componentwise_iso (@(iso.mk (counit F)) !is_iso_counit) d} end /- definition fully_faithful_of_is_equivalence (F : C ⇒ D) [H : is_equivalence F] : fully_faithful F := begin intro c c', fapply adjointify, { intro g, exact natural_map (@(iso.inverse (unit F)) !is_iso_unit) c' ∘ F⁻¹ g ∘ unit F c}, { intro g, rewrite [+respect_comp,▸*], krewrite [natural_map_inverse], xrewrite [respect_inv'], apply inverse_comp_eq_of_eq_comp, exact sorry /-this is basically the naturality of the counit-/ }, { exact sorry}, end section variables (F G) variables (η : G ∘f F ≅ 1) (ε : F ∘f G ≅ 1) include η ε --definition inverse_of_unit_counit definition is_equivalence.mk : is_equivalence F := begin exact sorry end end definition fully_faithful_equiv (F : C ⇒ D) : fully_faithful F ≃ (faithful F × full F) := sorry definition is_equivalence_equiv (F : C ⇒ D) : is_equivalence F ≃ (fully_faithful F × split_essentially_surjective F) := sorry definition is_hprop_is_weak_equivalence (F : C ⇒ D) : is_hprop (is_weak_equivalence F) := sorry definition is_hprop_is_equivalence {C D : Category} (F : C ⇒ D) : is_hprop (is_equivalence F) := sorry definition is_equivalence_equiv_is_weak_equivalence {C D : Category} (F : C ⇒ D) : is_equivalence F ≃ is_weak_equivalence F := sorry definition is_hprop_is_isomorphism (F : C ⇒ D) : is_hprop (is_isomorphism F) := sorry definition is_isomorphism_equiv1 (F : C ⇒ D) : is_equivalence F ≃ Σ(G : D ⇒ C) (η : 1 = G ∘f F) (ε : F ∘f G = 1), sorry ▸ ap (λ(H : C ⇒ C), F ∘f H) η = ap (λ(H : D ⇒ D), H ∘f F) ε⁻¹ := sorry definition is_isomorphism_equiv2 (F : C ⇒ D) : is_equivalence F ≃ ∃(G : D ⇒ C), 1 = G ∘f F × F ∘f G = 1 := sorry definition is_equivalence_of_isomorphism (H : is_isomorphism F) : is_equivalence F := sorry definition is_isomorphism_of_is_equivalence {C D : Category} {F : C ⇒ D} (H : is_equivalence F) : is_isomorphism F := sorry definition isomorphism_of_eq {C D : Precategory} (p : C = D) : C ≌ D := sorry definition is_equiv_isomorphism_of_eq (C D : Precategory) : is_equiv (@isomorphism_of_eq C D) := sorry definition equivalence_of_eq {C D : Precategory} (p : C = D) : C ⋍ D := sorry definition is_equiv_equivalence_of_eq (C D : Category) : is_equiv (@equivalence_of_eq C D) := sorry -/ end category