-- Copyright (c) 2014 Floris van Doorn. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Authors: Floris van Doorn, Jeremy Avigad -- int.basic -- ========= -- The integers, with addition, multiplication, and subtraction. import ..nat.basic ..nat.order ..nat.sub ..prod ..quotient ..quotient tools.tactic algebra.relation import algebra.binary import tools.fake_simplifier open nat open quotient subtype prod relation open decidable binary fake_simplifier open eq.ops namespace int -- ## The defining equivalence relation on ℕ × ℕ definition rel (a b : ℕ × ℕ) : Prop := pr1 a + pr2 b = pr2 a + pr1 b theorem rel_comp (n m k l : ℕ) : (rel (pair n m) (pair k l)) ↔ (n + l = m + k) := have H : (pr1 (pair n m) + pr2 (pair k l) = pr2 (pair n m) + pr1 (pair k l)) ↔ (n + l = m + k), by simp, H -- add_rewrite rel_comp --local theorem rel_refl {a : ℕ × ℕ} : rel a a := add_comm theorem rel_symm {a b : ℕ × ℕ} (H : rel a b) : rel b a := calc pr1 b + pr2 a = pr2 a + pr1 b : add_comm ... = pr1 a + pr2 b : H⁻¹ ... = pr2 b + pr1 a : add_comm theorem rel_trans {a b c : ℕ × ℕ} (H1 : rel a b) (H2 : rel b c) : rel a c := have H3 : pr1 a + pr2 c + pr2 b = pr2 a + pr1 c + pr2 b, from calc pr1 a + pr2 c + pr2 b = pr1 a + pr2 b + pr2 c : by simp ... = pr2 a + pr1 b + pr2 c : {H1} ... = pr2 a + (pr1 b + pr2 c) : by simp ... = pr2 a + (pr2 b + pr1 c) : {H2} ... = pr2 a + pr1 c + pr2 b : by simp, show pr1 a + pr2 c = pr2 a + pr1 c, from add_cancel_right H3 theorem rel_equiv : is_equivalence rel := is_equivalence.mk (is_reflexive.mk @rel_refl) (is_symmetric.mk @rel_symm) (is_transitive.mk @rel_trans) theorem rel_flip {a b : ℕ × ℕ} (H : rel a b) : rel (flip a) (flip b) := calc pr1 (flip a) + pr2 (flip b) = pr2 a + pr1 b : by simp ... = pr1 a + pr2 b : H⁻¹ ... = pr2 (flip a) + pr1 (flip b) : by simp -- ## The canonical representative of each equivalence class definition proj (a : ℕ × ℕ) : ℕ × ℕ := if pr1 a ≥ pr2 a then pair (pr1 a - pr2 a) 0 else pair 0 (pr2 a - pr1 a) theorem proj_ge {a : ℕ × ℕ} (H : pr1 a ≥ pr2 a) : proj a = pair (pr1 a - pr2 a) 0 := if_pos H theorem proj_lt {a : ℕ × ℕ} (H : pr1 a < pr2 a) : proj a = pair 0 (pr2 a - pr1 a) := have H2 : ¬ pr1 a ≥ pr2 a, from lt_imp_not_ge H, if_neg H2 theorem proj_le {a : ℕ × ℕ} (H : pr1 a ≤ pr2 a) : proj a = pair 0 (pr2 a - pr1 a) := or.elim le_or_gt (assume H2 : pr2 a ≤ pr1 a, have H3 : pr1 a = pr2 a, from le_antisym H H2, calc proj a = pair (pr1 a - pr2 a) 0 : proj_ge H2 ... = pair (pr1 a - pr2 a) (pr1 a - pr1 a) : {sub_self⁻¹} ... = pair (pr2 a - pr2 a) (pr2 a - pr1 a) : {H3} ... = pair 0 (pr2 a - pr1 a) : {sub_self}) (assume H2 : pr1 a < pr2 a, proj_lt H2) theorem proj_ge_pr1 {a : ℕ × ℕ} (H : pr1 a ≥ pr2 a) : pr1 (proj a) = pr1 a - pr2 a := calc pr1 (proj a) = pr1 (pair (pr1 a - pr2 a) 0) : {proj_ge H} ... = pr1 a - pr2 a : pr1_pair (pr1 a - pr2 a) 0 theorem proj_ge_pr2 {a : ℕ × ℕ} (H : pr1 a ≥ pr2 a) : pr2 (proj a) = 0 := calc pr2 (proj a) = pr2 (pair (pr1 a - pr2 a) 0) : {proj_ge H} ... = 0 : pr2_pair (pr1 a - pr2 a) 0 theorem proj_le_pr1 {a : ℕ × ℕ} (H : pr1 a ≤ pr2 a) : pr1 (proj a) = 0 := calc pr1 (proj a) = pr1 (pair 0 (pr2 a - pr1 a)) : {proj_le H} ... = 0 : pr1_pair 0 (pr2 a - pr1 a) theorem proj_le_pr2 {a : ℕ × ℕ} (H : pr1 a ≤ pr2 a) : pr2 (proj a) = pr2 a - pr1 a := calc pr2 (proj a) = pr2 (pair 0 (pr2 a - pr1 a)) : {proj_le H} ... = pr2 a - pr1 a : pr2_pair 0 (pr2 a - pr1 a) theorem proj_flip (a : ℕ × ℕ) : proj (flip a) = flip (proj a) := have special : ∀a, pr2 a ≤ pr1 a → proj (flip a) = flip (proj a), from take a, assume H : pr2 a ≤ pr1 a, have H2 : pr1 (flip a) ≤ pr2 (flip a), from P_flip a H, have H3 : pr1 (proj (flip a)) = pr1 (flip (proj a)), from calc pr1 (proj (flip a)) = 0 : proj_le_pr1 H2 ... = pr2 (proj a) : (proj_ge_pr2 H)⁻¹ ... = pr1 (flip (proj a)) : (flip_pr1 (proj a))⁻¹, have H4 : pr2 (proj (flip a)) = pr2 (flip (proj a)), from calc pr2 (proj (flip a)) = pr2 (flip a) - pr1 (flip a) : proj_le_pr2 H2 ... = pr1 a - pr1 (flip a) : {flip_pr2 a} ... = pr1 a - pr2 a : {flip_pr1 a} ... = pr1 (proj a) : (proj_ge_pr1 H)⁻¹ ... = pr2 (flip (proj a)) : (flip_pr2 (proj a))⁻¹, prod.equal H3 H4, or.elim le_total (assume H : pr2 a ≤ pr1 a, special a H) (assume H : pr1 a ≤ pr2 a, have H2 : pr2 (flip a) ≤ pr1 (flip a), from P_flip a H, calc proj (flip a) = flip (flip (proj (flip a))) : (flip_flip (proj (flip a)))⁻¹ ... = flip (proj (flip (flip a))) : {(special (flip a) H2)⁻¹} ... = flip (proj a) : {flip_flip a}) theorem proj_rel (a : ℕ × ℕ) : rel a (proj a) := or.elim le_total (assume H : pr2 a ≤ pr1 a, calc pr1 a + pr2 (proj a) = pr1 a + 0 : {proj_ge_pr2 H} ... = pr1 a : add_zero_right ... = pr2 a + (pr1 a - pr2 a) : (add_sub_le H)⁻¹ ... = pr2 a + pr1 (proj a) : {(proj_ge_pr1 H)⁻¹}) (assume H : pr1 a ≤ pr2 a, calc pr1 a + pr2 (proj a) = pr1 a + (pr2 a - pr1 a) : {proj_le_pr2 H} ... = pr2 a : add_sub_le H ... = pr2 a + 0 : add_zero_right⁻¹ ... = pr2 a + pr1 (proj a) : {(proj_le_pr1 H)⁻¹}) theorem proj_congr {a b : ℕ × ℕ} (H : rel a b) : proj a = proj b := have special : ∀a b, pr2 a ≤ pr1 a → rel a b → proj a = proj b, from take a b, assume H2 : pr2 a ≤ pr1 a, assume H : rel a b, have H3 : pr1 a + pr2 b ≤ pr2 a + pr1 b, from H ▸ le_refl, have H4 : pr2 b ≤ pr1 b, from add_le_inv H3 H2, have H5 : pr1 (proj a) = pr1 (proj b), from calc pr1 (proj a) = pr1 a - pr2 a : proj_ge_pr1 H2 ... = pr1 a + pr2 b - pr2 b - pr2 a : {sub_add_left⁻¹} ... = pr2 a + pr1 b - pr2 b - pr2 a : {H} ... = pr2 a + pr1 b - pr2 a - pr2 b : {sub_comm} ... = pr1 b - pr2 b : {sub_add_left2} ... = pr1 (proj b) : (proj_ge_pr1 H4)⁻¹, have H6 : pr2 (proj a) = pr2 (proj b), from calc pr2 (proj a) = 0 : proj_ge_pr2 H2 ... = pr2 (proj b) : {(proj_ge_pr2 H4)⁻¹}, prod.equal H5 H6, or.elim le_total (assume H2 : pr2 a ≤ pr1 a, special a b H2 H) (assume H2 : pr1 a ≤ pr2 a, have H3 : pr2 (flip a) ≤ pr1 (flip a), from P_flip a H2, have H4 : proj (flip a) = proj (flip b), from special (flip a) (flip b) H3 (rel_flip H), have H5 : flip (proj a) = flip (proj b), from proj_flip a ▸ proj_flip b ▸ H4, show proj a = proj b, from flip_inj H5) theorem proj_inj {a b : ℕ × ℕ} (H : proj a = proj b) : rel a b := representative_map_equiv_inj rel_equiv proj_rel @proj_congr H theorem proj_zero_or (a : ℕ × ℕ) : pr1 (proj a) = 0 ∨ pr2 (proj a) = 0 := or.elim le_total (assume H : pr2 a ≤ pr1 a, or.inr (proj_ge_pr2 H)) (assume H : pr1 a ≤ pr2 a, or.inl (proj_le_pr1 H)) theorem proj_idempotent (a : ℕ × ℕ) : proj (proj a) = proj a := representative_map_idempotent_equiv proj_rel @proj_congr a -- ## Definition of ℤ and basic theorems and definitions protected opaque definition int := image proj notation `ℤ` := int opaque definition psub : ℕ × ℕ → ℤ := fun_image proj opaque definition rep : ℤ → ℕ × ℕ := subtype.elt_of theorem quotient : is_quotient rel psub rep := representative_map_to_quotient_equiv rel_equiv proj_rel @proj_congr theorem psub_rep (a : ℤ) : psub (rep a) = a := abs_rep quotient a theorem destruct (a : ℤ) : ∃n m : ℕ, a = psub (pair n m) := exists_intro (pr1 (rep a)) (exists_intro (pr2 (rep a)) (calc a = psub (rep a) : (psub_rep a)⁻¹ ... = psub (pair (pr1 (rep a)) (pr2 (rep a))) : {(prod_ext (rep a))⁻¹})) -- TODO it should not be opaque. protected opaque definition has_decidable_eq [instance] : decidable_eq ℤ := _ irreducible int definition of_nat [coercion] [reducible] (n : ℕ) : ℤ := psub (pair n 0) definition of_num [coercion] [reducible] (n : num) : ℤ := of_nat (nat.of_num n) theorem eq_zero_intro (n : ℕ) : psub (pair n n) = 0 := have H : rel (pair n n) (pair 0 0), by simp, eq_abs quotient H definition to_nat : ℤ → ℕ := rec_constant quotient (fun v, dist (pr1 v) (pr2 v)) theorem to_nat_comp (n m : ℕ) : (to_nat (psub (pair n m))) = dist n m := have H : ∀v w : ℕ × ℕ, rel v w → dist (pr1 v) (pr2 v) = dist (pr1 w) (pr2 w), from take v w H, dist_eq_intro H, have H2 : ∀v : ℕ × ℕ, (to_nat (psub v)) = dist (pr1 v) (pr2 v), from take v, (comp_constant quotient H rel_refl), iff.mp (by simp) H2 (pair n m) -- add_rewrite to_nat_comp --local theorem to_nat_of_nat (n : ℕ) : to_nat (of_nat n) = n := calc (to_nat (psub (pair n 0))) = dist n 0 : by simp ... = n : by simp theorem of_nat_inj {n m : ℕ} (H : of_nat n = of_nat m) : n = m := calc n = to_nat (of_nat n) : (to_nat_of_nat n)⁻¹ ... = to_nat (of_nat m) : {H} ... = m : to_nat_of_nat m theorem to_nat_eq_zero {a : ℤ} (H : to_nat a = 0) : a = 0 := obtain (xa ya : ℕ) (Ha : a = psub (pair xa ya)), from destruct a, have H2 : dist xa ya = 0, from calc dist xa ya = (to_nat (psub (pair xa ya))) : by simp ... = (to_nat a) : {Ha⁻¹} ... = 0 : H, have H3 : xa = ya, from dist_eq_zero H2, calc a = psub (pair xa ya) : Ha ... = psub (pair ya ya) : {H3} ... = 0 : eq_zero_intro ya -- add_rewrite to_nat_of_nat -- ## neg definition neg : ℤ → ℤ := quotient_map quotient flip -- TODO: is this good? Note: replacing 100 by max makes it bind stronger than application. notation `-` x:100 := neg x theorem neg_comp (n m : ℕ) : -(psub (pair n m)) = psub (pair m n) := have H : ∀a, -(psub a) = psub (flip a), from take a, comp_quotient_map quotient @rel_flip rel_refl, calc -(psub (pair n m)) = psub (flip (pair n m)) : H (pair n m) ... = psub (pair m n) : by simp -- add_rewrite neg_comp --local theorem neg_zero : -0 = 0 := calc -(psub (pair 0 0)) = psub (pair 0 0) : neg_comp 0 0 theorem neg_neg (a : ℤ) : -(-a) = a := obtain (xa ya : ℕ) (Ha : a = psub (pair xa ya)), from destruct a, by simp -- add_rewrite neg_neg neg_zero theorem neg_inj {a b : ℤ} (H : -a = -b) : a = b := iff.mp (by simp) (congr_arg neg H) theorem neg_move {a b : ℤ} (H : -a = b) : -b = a := H ▸ neg_neg a theorem to_nat_neg (a : ℤ) : (to_nat (-a)) = (to_nat a) := obtain (xa ya : ℕ) (Ha : a = psub (pair xa ya)), from destruct a, by simp theorem pos_eq_neg {n m : ℕ} (H : n = -m) : n = 0 ∧ m = 0 := have H2 : ∀n : ℕ, n = psub (pair n 0), from take n : ℕ, rfl, have H3 : psub (pair n 0) = psub (pair 0 m), from iff.mp (by simp) H, have H4 : rel (pair n 0) (pair 0 m), from R_intro_refl quotient @rel_refl H3, have H5 : n + m = 0, from calc n + m = pr1 (pair n 0) + pr2 (pair 0 m) : by simp ... = pr2 (pair n 0) + pr1 (pair 0 m) : H4 ... = 0 : by simp, add_eq_zero H5 -- add_rewrite to_nat_neg ---reverse equalities reducible int theorem cases (a : ℤ) : (∃n : ℕ, a = of_nat n) ∨ (∃n : ℕ, a = - n) := have Hrep : proj (rep a) = rep a, from @idempotent_image_fix _ proj proj_idempotent a, or.imp_or (or.swap (proj_zero_or (rep a))) (assume H : pr2 (proj (rep a)) = 0, have H2 : pr2 (rep a) = 0, from Hrep ▸ H, exists_intro (pr1 (rep a)) (calc a = psub (rep a) : (psub_rep a)⁻¹ ... = psub (pair (pr1 (rep a)) (pr2 (rep a))) : {(prod_ext (rep a))⁻¹} ... = psub (pair (pr1 (rep a)) 0) : {H2} ... = of_nat (pr1 (rep a)) : rfl)) (assume H : pr1 (proj (rep a)) = 0, have H2 : pr1 (rep a) = 0, from Hrep ▸ H, exists_intro (pr2 (rep a)) (calc a = psub (rep a) : (psub_rep a)⁻¹ ... = psub (pair (pr1 (rep a)) (pr2 (rep a))) : {(prod_ext (rep a))⁻¹} ... = psub (pair 0 (pr2 (rep a))) : {H2} ... = -(psub (pair (pr2 (rep a)) 0)) : by simp ... = -(of_nat (pr2 (rep a))) : rfl)) irreducible int ---rename to by_cases in Lean 0.2 (for now using this to avoid name clash) theorem int_by_cases {P : ℤ → Prop} (a : ℤ) (H1 : ∀n : ℕ, P (of_nat n)) (H2 : ∀n : ℕ, P (-n)) : P a := or.elim (cases a) (assume H, obtain (n : ℕ) (H3 : a = n), from H, H3⁻¹ ▸ H1 n) (assume H, obtain (n : ℕ) (H3 : a = -n), from H, H3⁻¹ ▸ H2 n) ---reverse equalities, rename theorem cases_succ (a : ℤ) : (∃n : ℕ, a = of_nat n) ∨ (∃n : ℕ, a = - (of_nat (succ n))) := or.elim (cases a) (assume H : (∃n : ℕ, a = of_nat n), or.inl H) (assume H, obtain (n : ℕ) (H2 : a = -(of_nat n)), from H, discriminate (assume H3 : n = 0, have H4 : a = of_nat 0, from calc a = -(of_nat n) : H2 ... = -(of_nat 0) : {H3} ... = of_nat 0 : neg_zero, or.inl (exists_intro 0 H4)) (take k : ℕ, assume H3 : n = succ k, have H4 : a = -(of_nat (succ k)), from H3 ▸ H2, or.inr (exists_intro k H4))) theorem int_by_cases_succ {P : ℤ → Prop} (a : ℤ) (H1 : ∀n : ℕ, P (of_nat n)) (H2 : ∀n : ℕ, P (-(of_nat (succ n)))) : P a := or.elim (cases_succ a) (assume H, obtain (n : ℕ) (H3 : a = of_nat n), from H, H3⁻¹ ▸ H1 n) (assume H, obtain (n : ℕ) (H3 : a = -(of_nat (succ n))), from H, H3⁻¹ ▸ H2 n) --some of these had to be transparent for theorem cases irreducible psub proj -- ## add theorem rel_add {a a' b b' : ℕ × ℕ} (Ha : rel a a') (Hb : rel b b') : rel (map_pair2 add a b) (map_pair2 add a' b') := calc pr1 (map_pair2 add a b) + pr2 (map_pair2 add a' b') = pr1 a + pr2 a' + (pr1 b + pr2 b') : by simp ... = pr2 a + pr1 a' + (pr1 b + pr2 b') : {Ha} ... = pr2 a + pr1 a' + (pr2 b + pr1 b') : {Hb} ... = pr2 (map_pair2 add a b) + pr1 (map_pair2 add a' b') : by simp definition add : ℤ → ℤ → ℤ := quotient_map_binary quotient (map_pair2 nat.add) infixl `+` := int.add theorem add_comp (n m k l : ℕ) : psub (pair n m) + psub (pair k l) = psub (pair (n + k) (m + l)) := have H : ∀a b, psub a + psub b = psub (map_pair2 nat.add a b), from comp_quotient_map_binary_refl @rel_refl quotient @rel_add, H (pair n m) (pair k l) ⬝ by simp -- add_rewrite add_comp --local theorem add_comm (a b : ℤ) : a + b = b + a := obtain (xa ya : ℕ) (Ha : a = psub (pair xa ya)), from destruct a, obtain (xb yb : ℕ) (Hb : b = psub (pair xb yb)), from destruct b, by simp theorem add_assoc (a b c : ℤ) : a + b + c = a + (b + c) := obtain (xa ya : ℕ) (Ha : a = psub (pair xa ya)), from destruct a, obtain (xb yb : ℕ) (Hb : b = psub (pair xb yb)), from destruct b, obtain (xc yc : ℕ) (Hc : c = psub (pair xc yc)), from destruct c, by simp theorem add_left_comm (a b c : ℤ) : a + (b + c) = b + (a + c) := left_comm add_comm add_assoc a b c theorem add_right_comm (a b c : ℤ) : a + b + c = a + c + b := right_comm add_comm add_assoc a b c -- ### interaction of add with other functions and constants theorem add_zero_right (a : ℤ) : a + 0 = a := obtain (xa ya : ℕ) (Ha : a = psub (pair xa ya)), from destruct a, have H0 : 0 = psub (pair 0 0), from rfl, by simp theorem add_zero_left (a : ℤ) : 0 + a = a := add_comm a 0 ▸ add_zero_right a theorem add_inverse_right (a : ℤ) : a + -a = 0 := have H : ∀n, psub (pair n n) = 0, from eq_zero_intro, obtain (xa ya : ℕ) (Ha : a = psub (pair xa ya)), from destruct a, by simp theorem add_inverse_left (a : ℤ) : -a + a = 0 := add_comm a (-a) ▸ add_inverse_right a theorem neg_add_distr (a b : ℤ) : -(a + b) = -a + -b := obtain (xa ya : ℕ) (Ha : a = psub (pair xa ya)), from destruct a, obtain (xb yb : ℕ) (Hb : b = psub (pair xb yb)), from destruct b, by simp theorem to_nat_add_le (a b : ℤ) : to_nat (a + b) ≤ to_nat a + to_nat b := --note: ≤ is nat::≤ obtain (xa ya : ℕ) (Ha : a = psub (pair xa ya)), from destruct a, obtain (xb yb : ℕ) (Hb : b = psub (pair xb yb)), from destruct b, have H : dist (xa + xb) (ya + yb) ≤ dist xa ya + dist xb yb, from dist_add_le_add_dist, by simp -- TODO: note, we have to add #nat to get the right interpretation theorem add_of_nat (n m : nat) : of_nat n + of_nat m = #nat n + m := -- this is of_nat (n + m) have H : ∀n : ℕ, n = psub (pair n 0), from take n : ℕ, rfl, by simp -- add_rewrite add_of_nat theorem of_nat_succ (n : ℕ) : of_nat (succ n) = of_nat n + 1 := by simp -- ## sub definition sub (a b : ℤ) : ℤ := a + -b infixl `-` := int.sub theorem sub_def (a b : ℤ) : a - b = a + -b := rfl theorem add_neg_right (a b : ℤ) : a + -b = a - b := rfl theorem add_neg_left (a b : ℤ) : -a + b = b - a := add_comm (-a) b theorem sub_neg_right (a b : ℤ) : a - (-b) = a + b := neg_neg b ▸ eq.refl (a - (-b)) theorem sub_neg_neg (a b : ℤ) : -a - (-b) = b - a := neg_neg b ▸ add_comm (-a) (-(-b)) theorem sub_self (a : ℤ) : a - a = 0 := add_inverse_right a theorem sub_zero_right (a : ℤ) : a - 0 = a := neg_zero⁻¹ ▸ add_zero_right a theorem sub_zero_left (a : ℤ) : 0 - a = -a := add_zero_left (-a) theorem neg_sub (a b : ℤ) : -(a - b) = -a + b := calc -(a - b) = -a + -(-b) : neg_add_distr a (-b) ... = -a + b : {neg_neg b} theorem neg_sub_flip (a b : ℤ) : -(a - b) = b - a := calc -(a - b) = -a + b : neg_sub a b ... = b - a : add_comm (-a) b theorem sub_sub_assoc (a b c : ℤ) : a - b - c = a - (b + c) := calc a - b - c = a + (-b + -c) : add_assoc a (-b) (-c) ... = a + -(b + c) : {(neg_add_distr b c)⁻¹} theorem sub_add_assoc (a b c : ℤ) : a - b + c = a - (b - c) := calc a - b + c = a + (-b + c) : add_assoc a (-b) c ... = a + -(b - c) : {(neg_sub b c)⁻¹} theorem add_sub_assoc (a b c : ℤ) : a + b - c = a + (b - c) := add_assoc a b (-c) theorem add_sub_inverse (a b : ℤ) : a + b - b = a := calc a + b - b = a + (b - b) : add_assoc a b (-b) ... = a + 0 : {sub_self b} ... = a : add_zero_right a theorem add_sub_inverse2 (a b : ℤ) : a + b - a = b := add_comm b a ▸ add_sub_inverse b a theorem sub_add_inverse (a b : ℤ) : a - b + b = a := add_right_comm a b (-b) ▸ add_sub_inverse a b -- add_rewrite add_zero_left add_zero_right -- add_rewrite add_comm add_assoc add_left_comm -- add_rewrite sub_def add_inverse_right add_inverse_left -- add_rewrite neg_add_distr ---- add_rewrite sub_sub_assoc sub_add_assoc add_sub_assoc ---- add_rewrite add_neg_right add_neg_left ---- add_rewrite sub_self -- ### inversion theorems for add and sub -- a + a = 0 -> a = 0 -- a = -a -> a = 0 theorem add_cancel_right {a b c : ℤ} (H : a + c = b + c) : a = b := calc a = a + c - c : (add_sub_inverse a c)⁻¹ ... = b + c - c : {H} ... = b : add_sub_inverse b c theorem add_cancel_left {a b c : ℤ} (H : a + b = a + c) : b = c := add_cancel_right ((H ▸ (add_comm a b)) ▸ add_comm a c) theorem add_eq_zero_right {a b : ℤ} (H : a + b = 0) : -a = b := have H2 : a + -a = a + b, from (add_inverse_right a)⁻¹ ▸ H⁻¹, show -a = b, from add_cancel_left H2 theorem add_eq_zero_left {a b : ℤ} (H : a + b = 0) : -b = a := neg_move (add_eq_zero_right H) theorem add_eq_self {a b : ℤ} (H : a + b = a) : b = 0 := add_cancel_left (H ⬝ (add_zero_right a)⁻¹) theorem sub_inj_left {a b c : ℤ} (H : a - b = a - c) : b = c := neg_inj (add_cancel_left H) theorem sub_inj_right {a b c : ℤ} (H : a - b = c - b) : a = c := add_cancel_right H theorem sub_eq_zero {a b : ℤ} (H : a - b = 0) : a = b := neg_inj (add_eq_zero_right H) theorem add_imp_sub_right {a b c : ℤ} (H : a + b = c) : c - b = a := have H2 : c - b + b = a + b, from (sub_add_inverse c b) ⬝ H⁻¹, add_cancel_right H2 theorem add_imp_sub_left {a b c : ℤ} (H : a + b = c) : c - a = b := add_imp_sub_right (add_comm a b ▸ H) theorem sub_imp_add {a b c : ℤ} (H : a - b = c) : c + b = a := neg_neg b ▸ add_imp_sub_right H theorem sub_imp_sub {a b c : ℤ} (H : a - b = c) : a - c = b := have H2 : c + b = a, from sub_imp_add H, add_imp_sub_left H2 theorem sub_add_add_right (a b c : ℤ) : a + c - (b + c) = a - b := calc a + c - (b + c) = a + (c - (b + c)) : add_sub_assoc a c (b + c) ... = a + (c - b - c) : {(sub_sub_assoc c b c)⁻¹} ... = a + -b : {add_sub_inverse2 c (-b)} theorem sub_add_add_left (a b c : ℤ) : c + a - (c + b) = a - b := add_comm b c ▸ add_comm a c ▸ sub_add_add_right a b c theorem dist_def (n m : ℕ) : dist n m = (to_nat (of_nat n - m)) := have H : of_nat n - m = psub (pair n m), from calc psub (pair n 0) + -psub (pair m 0) = psub (pair (n + 0) (0 + m)) : by simp ... = psub (pair n m) : by simp, calc dist n m = (to_nat (psub (pair n m))) : by simp ... = (to_nat (of_nat n - m)) : {H⁻¹} -- ## mul theorem rel_mul_prep {xa ya xb yb xn yn xm ym : ℕ} (H1 : xa + yb = ya + xb) (H2 : xn + ym = yn + xm) : xa * xn + ya * yn + (xb * ym + yb * xm) = xa * yn + ya * xn + (xb * xm + yb * ym) := have H3 : xa * xn + ya * yn + (xb * ym + yb * xm) + (yb * xn + xb * yn + (xb * xn + yb * yn)) = xa * yn + ya * xn + (xb * xm + yb * ym) + (yb * xn + xb * yn + (xb * xn + yb * yn)), from calc xa * xn + ya * yn + (xb * ym + yb * xm) + (yb * xn + xb * yn + (xb * xn + yb * yn)) = xa * xn + yb * xn + (ya * yn + xb * yn) + (xb * xn + xb * ym + (yb * yn + yb * xm)) : by simp ... = (xa + yb) * xn + (ya + xb) * yn + (xb * (xn + ym) + yb * (yn + xm)) : by simp ... = (ya + xb) * xn + (xa + yb) * yn + (xb * (yn + xm) + yb * (xn + ym)) : by simp ... = ya * xn + xb * xn + (xa * yn + yb * yn) + (xb * yn + xb * xm + (yb*xn + yb*ym)) : by simp ... = xa * yn + ya * xn + (xb * xm + yb * ym) + (yb * xn + xb * yn + (xb * xn + yb * yn)) : by simp, nat.add_cancel_right H3 theorem rel_mul {u u' v v' : ℕ × ℕ} (H1 : rel u u') (H2 : rel v v') : rel (pair (pr1 u * pr1 v + pr2 u * pr2 v) (pr1 u * pr2 v + pr2 u * pr1 v)) (pair (pr1 u' * pr1 v' + pr2 u' * pr2 v') (pr1 u' * pr2 v' + pr2 u' * pr1 v')) := calc pr1 (pair (pr1 u * pr1 v + pr2 u * pr2 v) (pr1 u * pr2 v + pr2 u * pr1 v)) + pr2 (pair (pr1 u' * pr1 v' + pr2 u' * pr2 v') (pr1 u' * pr2 v' + pr2 u' * pr1 v')) = (pr1 u * pr1 v + pr2 u * pr2 v) + (pr1 u' * pr2 v' + pr2 u' * pr1 v') : by simp ... = (pr1 u * pr2 v + pr2 u * pr1 v) + (pr1 u' * pr1 v' + pr2 u' * pr2 v') : rel_mul_prep H1 H2 ... = pr2 (pair (pr1 u * pr1 v + pr2 u * pr2 v) (pr1 u * pr2 v + pr2 u * pr1 v)) + pr1 (pair (pr1 u' * pr1 v' + pr2 u' * pr2 v') (pr1 u' * pr2 v' + pr2 u' * pr1 v')) : by simp definition mul : ℤ → ℤ → ℤ := quotient_map_binary quotient (fun u v : ℕ × ℕ, pair (pr1 u * pr1 v + pr2 u * pr2 v) (pr1 u * pr2 v + pr2 u * pr1 v)) infixl `*` := int.mul theorem mul_comp (n m k l : ℕ) : psub (pair n m) * psub (pair k l) = psub (pair (n * k + m * l) (n * l + m * k)) := have H : ∀u v, psub u * psub v = psub (pair (pr1 u * pr1 v + pr2 u * pr2 v) (pr1 u * pr2 v + pr2 u * pr1 v)), from comp_quotient_map_binary_refl @rel_refl quotient @rel_mul, H (pair n m) (pair k l) ⬝ by simp -- add_rewrite mul_comp theorem mul_comm (a b : ℤ) : a * b = b * a := obtain (xa ya : ℕ) (Ha : a = psub (pair xa ya)), from destruct a, obtain (xb yb : ℕ) (Hb : b = psub (pair xb yb)), from destruct b, by simp theorem mul_assoc (a b c : ℤ) : (a * b) * c = a * (b * c) := obtain (xa ya : ℕ) (Ha : a = psub (pair xa ya)), from destruct a, obtain (xb yb : ℕ) (Hb : b = psub (pair xb yb)), from destruct b, obtain (xc yc : ℕ) (Hc : c = psub (pair xc yc)), from destruct c, by simp theorem mul_left_comm : ∀a b c : ℤ, a * (b * c) = b * (a * c) := left_comm mul_comm mul_assoc theorem mul_right_comm : ∀a b c : ℤ, a * b * c = a * c * b := right_comm mul_comm mul_assoc -- ### interaction with other objects theorem mul_zero_right (a : ℤ) : a * 0 = 0 := obtain (xa ya : ℕ) (Ha : a = psub (pair xa ya)), from destruct a, have H0 : 0 = psub (pair 0 0), from rfl, by simp theorem mul_zero_left (a : ℤ) : 0 * a = 0 := mul_comm a 0 ▸ mul_zero_right a theorem mul_one_right (a : ℤ) : a * 1 = a := obtain (xa ya : ℕ) (Ha : a = psub (pair xa ya)), from destruct a, have H1 : 1 = psub (pair 1 0), from rfl, by simp theorem mul_one_left (a : ℤ) : 1 * a = a := mul_comm a 1 ▸ mul_one_right a theorem mul_neg_right (a b : ℤ) : a * -b = -(a * b) := obtain (xa ya : ℕ) (Ha : a = psub (pair xa ya)), from destruct a, obtain (xb yb : ℕ) (Hb : b = psub (pair xb yb)), from destruct b, by simp theorem mul_neg_left (a b : ℤ) : -a * b = -(a * b) := mul_comm b a ▸ mul_comm b (-a) ▸ mul_neg_right b a -- add_rewrite mul_neg_right mul_neg_left theorem mul_neg_neg (a b : ℤ) : -a * -b = a * b := by simp theorem mul_right_distr (a b c : ℤ) : (a + b) * c = a * c + b * c := obtain (xa ya : ℕ) (Ha : a = psub (pair xa ya)), from destruct a, obtain (xb yb : ℕ) (Hb : b = psub (pair xb yb)), from destruct b, obtain (xc yc : ℕ) (Hc : c = psub (pair xc yc)), from destruct c, by simp theorem mul_left_distr (a b c : ℤ) : a * (b + c) = a * b + a * c := calc a * (b + c) = (b + c) * a : mul_comm a (b + c) ... = b * a + c * a : mul_right_distr b c a ... = a * b + c * a : {mul_comm b a} ... = a * b + a * c : {mul_comm c a} theorem mul_sub_right_distr (a b c : ℤ) : (a - b) * c = a * c - b * c := calc (a + -b) * c = a * c + -b * c : mul_right_distr a (-b) c ... = a * c + - (b * c) : {mul_neg_left b c} theorem mul_sub_left_distr (a b c : ℤ) : a * (b - c) = a * b - a * c := calc a * (b + -c) = a * b + a * -c : mul_left_distr a b (-c) ... = a * b + - (a * c) : {mul_neg_right a c} theorem mul_of_nat (n m : ℕ) : of_nat n * of_nat m = n * m := have H : ∀n : ℕ, n = psub (pair n 0), from take n : ℕ, rfl, by simp theorem mul_to_nat (a b : ℤ) : (to_nat (a * b)) = #nat (to_nat a) * (to_nat b) := obtain (xa ya : ℕ) (Ha : a = psub (pair xa ya)), from destruct a, obtain (xb yb : ℕ) (Hb : b = psub (pair xb yb)), from destruct b, have H : dist xa ya * dist xb yb = dist (xa * xb + ya * yb) (xa * yb + ya * xb), from dist_mul_dist, by simp -- add_rewrite mul_zero_left mul_zero_right mul_one_right mul_one_left -- add_rewrite mul_comm mul_assoc mul_left_comm -- add_rewrite mul_distr_right mul_distr_left mul_of_nat mul_sub_distr_left mul_sub_distr_right -- ---------- inversion theorem mul_eq_zero {a b : ℤ} (H : a * b = 0) : a = 0 ∨ b = 0 := have H2 : (to_nat a) * (to_nat b) = 0, from calc (to_nat a) * (to_nat b) = (to_nat (a * b)) : (mul_to_nat a b)⁻¹ ... = (to_nat 0) : {H} ... = 0 : to_nat_of_nat 0, have H3 : (to_nat a) = 0 ∨ (to_nat b) = 0, from mul_eq_zero H2, or.imp_or H3 (assume H : (to_nat a) = 0, to_nat_eq_zero H) (assume H : (to_nat b) = 0, to_nat_eq_zero H) theorem mul_cancel_left_or {a b c : ℤ} (H : a * b = a * c) : a = 0 ∨ b = c := have H2 : a * (b - c) = 0, by simp, have H3 : a = 0 ∨ b - c = 0, from mul_eq_zero H2, or.imp_or_right H3 (assume H4 : b - c = 0, sub_eq_zero H4) theorem mul_cancel_left {a b c : ℤ} (H1 : a ≠ 0) (H2 : a * b = a * c) : b = c := or.resolve_right (mul_cancel_left_or H2) H1 theorem mul_cancel_right_or {a b c : ℤ} (H : b * a = c * a) : a = 0 ∨ b = c := mul_cancel_left_or ((H ▸ (mul_comm b a)) ▸ mul_comm c a) theorem mul_cancel_right {a b c : ℤ} (H1 : c ≠ 0) (H2 : a * c = b * c) : a = b := or.resolve_right (mul_cancel_right_or H2) H1 theorem mul_ne_zero {a b : ℤ} (Ha : a ≠ 0) (Hb : b ≠ 0) : a * b ≠ 0 := not_intro (assume H : a * b = 0, or.elim (mul_eq_zero H) (assume H2 : a = 0, absurd H2 Ha) (assume H2 : b = 0, absurd H2 Hb)) theorem mul_ne_zero_left {a b : ℤ} (H : a * b ≠ 0) : a ≠ 0 := not_intro (assume H2 : a = 0, have H3 : a * b = 0, by simp, absurd H3 H) theorem mul_ne_zero_right {a b : ℤ} (H : a * b ≠ 0) : b ≠ 0 := mul_ne_zero_left (mul_comm a b ▸ H) end int definition int := int.int