/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn Adjoint functors -/ import .attributes open functor nat_trans is_trunc eq iso namespace category structure adjoint [class] {C D : Precategory} (F : C ⇒ D) (G : D ⇒ C) := (η : 1 ⟹ G ∘f F) (ε : F ∘f G ⟹ 1) (H : Π(c : C), ε (F c) ∘ F (η c) = ID (F c)) (K : Π(d : D), G (ε d) ∘ η (G d) = ID (G d)) -- TODO(?): define is_left_adjoint in terms of adjoint -- structure is_left_adjoint (F : C ⇒ D) := -- (G : D ⇒ C) -- G -- (is_adjoint : adjoint F G) infix ` ⊣ `:55 := adjoint structure is_left_adjoint [class] {C D : Precategory} (F : C ⇒ D) := (G : D ⇒ C) (η : 1 ⟹ G ∘f F) (ε : F ∘f G ⟹ 1) (H : Π(c : C), ε (F c) ∘ F (η c) = ID (F c)) (K : Π(d : D), G (ε d) ∘ η (G d) = ID (G d)) abbreviation right_adjoint [unfold 4] := @is_left_adjoint.G abbreviation unit [unfold 4] := @is_left_adjoint.η abbreviation counit [unfold 4] := @is_left_adjoint.ε abbreviation counit_unit_eq [unfold 4] := @is_left_adjoint.H abbreviation unit_counit_eq [unfold 4] := @is_left_adjoint.K theorem is_hprop_is_left_adjoint [instance] {C : Category} {D : Precategory} (F : C ⇒ D) : is_hprop (is_left_adjoint F) := begin apply is_hprop.mk, intro G G', cases G with G η ε H K, cases G' with G' η' ε' H' K', assert lem₁ : Π(p : G = G'), p ▸ η = η' → p ▸ ε = ε' → is_left_adjoint.mk G η ε H K = is_left_adjoint.mk G' η' ε' H' K', { intros p q r, induction p, induction q, induction r, esimp, apply apd011 (is_left_adjoint.mk G η ε) !is_hprop.elim !is_hprop.elim}, assert lem₂ : Π (d : carrier D), (to_fun_hom G (natural_map ε' d) ∘ natural_map η (to_fun_ob G' d)) ∘ to_fun_hom G' (natural_map ε d) ∘ natural_map η' (to_fun_ob G d) = id, { intro d, esimp, rewrite [assoc], rewrite [-assoc (G (ε' d))], esimp, rewrite [nf_fn_eq_fn_nf_pt' G' ε η d], esimp, rewrite [assoc], esimp, rewrite [-assoc], rewrite [↑functor.compose, -respect_comp G], rewrite [nf_fn_eq_fn_nf_pt ε ε' d,nf_fn_eq_fn_nf_pt η' η (G d),▸*], rewrite [respect_comp G], rewrite [assoc,▸*,-assoc (G (ε d))], rewrite [↑functor.compose, -respect_comp G], rewrite [H' (G d)], rewrite [respect_id,▸*,id_right], apply K}, assert lem₃ : Π (d : carrier D), (to_fun_hom G' (natural_map ε d) ∘ natural_map η' (to_fun_ob G d)) ∘ to_fun_hom G (natural_map ε' d) ∘ natural_map η (to_fun_ob G' d) = id, { intro d, esimp, rewrite [assoc, -assoc (G' (ε d))], esimp, rewrite [nf_fn_eq_fn_nf_pt' G ε' η' d], esimp, rewrite [assoc], esimp, rewrite [-assoc], rewrite [↑functor.compose, -respect_comp G'], rewrite [nf_fn_eq_fn_nf_pt ε' ε d,nf_fn_eq_fn_nf_pt η η' (G' d)], esimp, rewrite [respect_comp G'], rewrite [assoc,▸*,-assoc (G' (ε' d))], rewrite [↑functor.compose, -respect_comp G'], rewrite [H (G' d)], rewrite [respect_id,▸*,id_right], apply K'}, fapply lem₁, { fapply functor.eq_of_pointwise_iso, { fapply change_natural_map, { exact (G' ∘fn1 ε) ∘n !assoc_natural_rev ∘n (η' ∘1nf G)}, { intro d, exact (G' (ε d) ∘ η' (G d))}, { intro d, exact ap (λx, _ ∘ x) !id_left}}, { intro d, fconstructor, { exact (G (ε' d) ∘ η (G' d))}, { exact lem₂ d }, { exact lem₃ d }}}, { clear lem₁, refine transport_hom_of_eq_right _ η ⬝ _, krewrite hom_of_eq_compose_right, rewrite functor.hom_of_eq_eq_of_pointwise_iso, apply nat_trans_eq, intro c, esimp, refine !assoc⁻¹ ⬝ ap (λx, _ ∘ x) (nf_fn_eq_fn_nf_pt η η' c) ⬝ !assoc ⬝ _, esimp, rewrite [-respect_comp G',H c,respect_id G',▸*,id_left]}, { clear lem₁, refine transport_hom_of_eq_left _ ε ⬝ _, krewrite inv_of_eq_compose_left, rewrite functor.inv_of_eq_eq_of_pointwise_iso, apply nat_trans_eq, intro d, esimp, krewrite [respect_comp], rewrite [assoc,nf_fn_eq_fn_nf_pt ε' ε d,-assoc,▸*,H (G' d),id_right]} end end category