/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn Functors which are equivalences or isomorphisms -/ import .adjoint open eq functor iso prod nat_trans is_equiv equiv is_trunc namespace category variables {C D : Precategory} {F : C ⇒ D} {G : D ⇒ C} structure is_equivalence [class] (F : C ⇒ D) extends is_left_adjoint F := mk' :: (is_iso_unit : is_iso η) (is_iso_counit : is_iso ε) abbreviation inverse := @is_equivalence.G postfix ⁻¹ := inverse --a second notation for the inverse, which is not overloaded (there is no unicode superscript F) postfix [parsing_only] `⁻¹ᴱ`:std.prec.max_plus := inverse definition is_isomorphism [class] (F : C ⇒ D) := fully_faithful F × is_equiv (to_fun_ob F) structure equivalence (C D : Precategory) := (to_functor : C ⇒ D) (struct : is_equivalence to_functor) structure isomorphism (C D : Precategory) := (to_functor : C ⇒ D) (struct : is_isomorphism to_functor) infix ` ≃c `:25 := equivalence infix ` ≅c `:25 := isomorphism attribute equivalence.struct isomorphism.struct [instance] [priority 1500] attribute equivalence.to_functor isomorphism.to_functor [coercion] definition is_iso_unit [instance] (F : C ⇒ D) [H : is_equivalence F] : is_iso (unit F) := !is_equivalence.is_iso_unit definition is_iso_counit [instance] (F : C ⇒ D) [H : is_equivalence F] : is_iso (counit F) := !is_equivalence.is_iso_counit definition iso_unit (F : C ⇒ D) [H : is_equivalence F] : F⁻¹ᴱ ∘f F ≅ 1 := (@(iso.mk _) !is_iso_unit)⁻¹ⁱ definition iso_counit (F : C ⇒ D) [H : is_equivalence F] : F ∘f F⁻¹ᴱ ≅ 1 := @(iso.mk _) !is_iso_counit definition split_essentially_surjective_of_is_equivalence (F : C ⇒ D) [H : is_equivalence F] : split_essentially_surjective F := begin intro d, fconstructor, { exact F⁻¹ d}, { exact componentwise_iso (@(iso.mk (counit F)) !is_iso_counit) d} end end category namespace category section parameters {C D : Precategory} {F : C ⇒ D} {G : D ⇒ C} (η : G ∘f F ≅ 1) (ε : F ∘f G ≅ 1) private definition ηn : 1 ⟹ G ∘f F := to_inv η private definition εn : F ∘f G ⟹ 1 := to_hom ε private definition ηi (c : C) : G (F c) ≅ c := componentwise_iso η c private definition εi (d : D) : F (G d) ≅ d := componentwise_iso ε d private definition ηi' (c : C) : G (F c) ≅ c := to_fun_iso G (to_fun_iso F (ηi c)⁻¹ⁱ) ⬝i to_fun_iso G (εi (F c)) ⬝i ηi c local attribute ηn εn ηi εi ηi' [reducible] private theorem adj_η_natural {c c' : C} (f : hom c c') : G (F f) ∘ to_inv (ηi' c) = to_inv (ηi' c') ∘ f := let ηi'_nat : G ∘f F ⟹ 1 := calc G ∘f F ⟹ (G ∘f F) ∘f 1 : id_right_natural_rev (G ∘f F) ... ⟹ (G ∘f F) ∘f (G ∘f F) : (G ∘f F) ∘fn ηn ... ⟹ ((G ∘f F) ∘f G) ∘f F : assoc_natural (G ∘f F) G F ... ⟹ (G ∘f (F ∘f G)) ∘f F : assoc_natural_rev G F G ∘nf F ... ⟹ (G ∘f 1) ∘f F : (G ∘fn εn) ∘nf F ... ⟹ G ∘f F : id_right_natural G ∘nf F ... ⟹ 1 : to_hom η in begin refine is_natural_inverse' (G ∘f F) functor.id ηi' ηi'_nat _ f, intro c, esimp, rewrite [+id_left,id_right] end private theorem adjointify_adjH (c : C) : to_hom (εi (F c)) ∘ F (to_hom (ηi' c))⁻¹ = id := begin rewrite [respect_inv], apply comp_inverse_eq_of_eq_comp, rewrite [id_left,↑ηi',+respect_comp,+respect_inv',assoc], apply eq_comp_inverse_of_comp_eq, rewrite [↑εi,-naturality_iso_id ε (F c)], symmetry, exact naturality εn (F (to_hom (ηi c))) end private theorem adjointify_adjK (d : D) : G (to_hom (εi d)) ∘ to_hom (ηi' (G d))⁻¹ⁱ = id := begin apply comp_inverse_eq_of_eq_comp, rewrite [id_left,↑ηi',+respect_inv',assoc], apply eq_comp_inverse_of_comp_eq, rewrite [↑ηi,-naturality_iso_id η (G d),↑εi,naturality_iso_id ε d], exact naturality (to_hom η) (G (to_hom (εi d))), end parameter (G) include η ε definition is_equivalence.mk : is_equivalence F := begin fapply is_equivalence.mk', { exact G}, { fapply nat_trans.mk, { intro c, exact to_inv (ηi' c)}, { intro c c' f, exact adj_η_natural f}}, { exact εn}, { exact adjointify_adjH}, { exact adjointify_adjK}, { exact @(is_iso_nat_trans _) (λc, !is_iso_inverse)}, { unfold εn, apply iso.struct, }, end definition equivalence.MK : C ≃c D := equivalence.mk F is_equivalence.mk end variables {C D E : Precategory} {F : C ⇒ D} --TODO: add variants definition unit_eq_counit_inv (F : C ⇒ D) [H : is_equivalence F] (c : C) : to_fun_hom F (natural_map (unit F) c) = @(is_iso.inverse (counit F (F c))) (@(componentwise_is_iso (counit F)) !is_iso_counit (F c)) := begin apply eq_inverse_of_comp_eq_id, apply counit_unit_eq end definition fully_faithful_of_is_equivalence (F : C ⇒ D) [H : is_equivalence F] : fully_faithful F := begin intro c c', fapply adjointify, { intro g, exact natural_map (@(iso.inverse (unit F)) !is_iso_unit) c' ∘ F⁻¹ g ∘ unit F c}, { intro g, rewrite [+respect_comp,▸*], xrewrite [natural_map_inverse (unit F) c', respect_inv'], apply inverse_comp_eq_of_eq_comp, rewrite [+unit_eq_counit_inv], esimp, exact naturality (counit F)⁻¹ _}, { intro f, xrewrite [▸*,natural_map_inverse (unit F) c'], apply inverse_comp_eq_of_eq_comp, apply naturality (unit F)}, end definition is_isomorphism.mk [constructor] {F : C ⇒ D} (G : D ⇒ C) (p : G ∘f F = 1) (q : F ∘f G = 1) : is_isomorphism F := begin constructor, { apply fully_faithful_of_is_equivalence, fapply is_equivalence.mk, { exact G}, { apply iso_of_eq p}, { apply iso_of_eq q}}, { fapply adjointify, { exact G}, { exact ap010 to_fun_ob q}, { exact ap010 to_fun_ob p}} end definition isomorphism.MK [constructor] (F : C ⇒ D) (G : D ⇒ C) (p : G ∘f F = 1) (q : F ∘f G = 1) : C ≅c D := isomorphism.mk F (is_isomorphism.mk G p q) definition is_equiv_ob_of_is_isomorphism [instance] [unfold 4] (F : C ⇒ D) [H : is_isomorphism F] : is_equiv (to_fun_ob F) := pr2 H definition is_fully_faithful_of_is_isomorphism [instance] [unfold 4] (F : C ⇒ D) [H : is_isomorphism F] : fully_faithful F := pr1 H definition strict_inverse [constructor] (F : C ⇒ D) [H : is_isomorphism F] : D ⇒ C := begin fapply functor.mk, { intro d, exact (to_fun_ob F)⁻¹ᶠ d}, { intro d d' g, exact (to_fun_hom F)⁻¹ᶠ (inv_of_eq !right_inv ∘ g ∘ hom_of_eq !right_inv)}, { intro d, apply inv_eq_of_eq, rewrite [respect_id,id_left], apply left_inverse}, { intro d₁ d₂ d₃ g₂ g₁, apply inv_eq_of_eq, rewrite [respect_comp F,+right_inv (to_fun_hom F)], rewrite [+assoc], esimp, /-apply ap (λx, (x ∘ _) ∘ _), FAILS-/ refine ap (λx, (x ∘ _) ∘ _) _, refine !id_right⁻¹ ⬝ _, rewrite [▸*,-+assoc], refine ap (λx, _ ∘ _ ∘ x) _, exact !right_inverse⁻¹}, end postfix /-[parsing-only]-/ `⁻¹ˢ`:std.prec.max_plus := strict_inverse definition strict_right_inverse (F : C ⇒ D) [H : is_isomorphism F] : F ∘f F⁻¹ˢ = 1 := begin fapply functor_eq, { intro d, esimp, apply right_inv}, { intro d d' g, rewrite [▸*, right_inv (to_fun_hom F), +assoc], rewrite [↑[hom_of_eq,inv_of_eq,iso.to_inv], right_inverse], rewrite [id_left], apply comp_inverse_cancel_right}, end definition strict_left_inverse (F : C ⇒ D) [H : is_isomorphism F] : F⁻¹ˢ ∘f F = 1 := begin fapply functor_eq, { intro d, esimp, apply left_inv}, { intro d d' g, esimp, apply comp_eq_of_eq_inverse_comp, apply comp_inverse_eq_of_eq_comp, apply inv_eq_of_eq, rewrite [+respect_comp,-assoc], apply ap011 (λx y, x ∘ F g ∘ y), { rewrite [adj], rewrite [▸*,respect_inv_of_eq F]}, { rewrite [adj,▸*,respect_hom_of_eq F]}}, end definition is_equivalence_of_is_isomorphism [instance] [constructor] (F : C ⇒ D) [H : is_isomorphism F] : is_equivalence F := begin fapply is_equivalence.mk, { apply F⁻¹ˢ}, { apply iso_of_eq !strict_left_inverse}, { apply iso_of_eq !strict_right_inverse}, end definition equivalence_of_isomorphism [constructor] (F : C ≅c D) : C ≃c D := equivalence.mk F _ theorem is_hprop_is_equivalence [instance] {C : Category} {D : Precategory} (F : C ⇒ D) : is_hprop (is_equivalence F) := begin assert f : is_equivalence F ≃ Σ(H : is_left_adjoint F), is_iso (unit F) × is_iso (counit F), { fapply equiv.MK, { intro H, induction H, fconstructor: constructor, repeat (esimp;assumption) }, { intro H, induction H with H1 H2, induction H1, induction H2, constructor, repeat (esimp at *;assumption)}, { intro H, induction H with H1 H2, induction H1, induction H2, reflexivity}, { intro H, induction H, reflexivity}}, apply is_trunc_equiv_closed_rev, exact f, end theorem is_hprop_is_isomorphism [instance] (F : C ⇒ D) : is_hprop (is_isomorphism F) := by unfold is_isomorphism; exact _ /- closure properties -/ definition is_isomorphism_id [instance] [constructor] (C : Precategory) : is_isomorphism (1 : C ⇒ C) := is_isomorphism.mk 1 !functor.id_right !functor.id_right definition is_isomorphism_strict_inverse [constructor] (F : C ⇒ D) [K : is_isomorphism F] : is_isomorphism F⁻¹ˢ := is_isomorphism.mk F !strict_right_inverse !strict_left_inverse definition is_isomorphism_compose [constructor] (G : D ⇒ E) (F : C ⇒ D) [H : is_isomorphism G] [K : is_isomorphism F] : is_isomorphism (G ∘f F) := is_isomorphism.mk (F⁻¹ˢ ∘f G⁻¹ˢ) abstract begin rewrite [functor.assoc,-functor.assoc F⁻¹ˢ,strict_left_inverse,functor.id_right, strict_left_inverse] end end abstract begin rewrite [functor.assoc,-functor.assoc G,strict_right_inverse,functor.id_right, strict_right_inverse] end end definition is_equivalence_id [constructor] (C : Precategory) : is_equivalence (1 : C ⇒ C) := _ definition is_equivalence_inverse [constructor] (F : C ⇒ D) [K : is_equivalence F] : is_equivalence F⁻¹ᴱ := is_equivalence.mk F (iso_counit F) (iso_unit F) definition is_equivalence_compose [constructor] (G : D ⇒ E) (F : C ⇒ D) [H : is_equivalence G] [K : is_equivalence F] : is_equivalence (G ∘f F) := is_equivalence.mk (F⁻¹ᴱ ∘f G⁻¹ᴱ) abstract begin rewrite [functor.assoc,-functor.assoc F⁻¹ᴱ], refine ((_ ∘fi !iso_unit) ∘if _) ⬝i _, refine (iso_of_eq !functor.id_right ∘if _) ⬝i _, apply iso_unit end end abstract begin rewrite [functor.assoc,-functor.assoc G], refine ((_ ∘fi !iso_counit) ∘if _) ⬝i _, refine (iso_of_eq !functor.id_right ∘if _) ⬝i _, apply iso_counit end end variable (C) definition equivalence.refl [refl] [constructor] : C ≃c C := equivalence.mk _ !is_equivalence_id definition isomorphism.refl [refl] [constructor] : C ≅c C := isomorphism.mk _ !is_isomorphism_id variable {C} definition equivalence.symm [symm] [constructor] (H : C ≃c D) : D ≃c C := equivalence.mk _ (is_equivalence_inverse H) definition isomorphism.symm [symm] [constructor] (H : C ≅c D) : D ≅c C := isomorphism.mk _ (is_isomorphism_strict_inverse H) definition equivalence.trans [trans] [constructor] (H : C ≃c D) (K : D ≃c E) : C ≃c E := equivalence.mk _ (is_equivalence_compose K H) definition isomorphism.trans [trans] [constructor] (H : C ≅c D) (K : D ≅c E) : C ≅c E := isomorphism.mk _ (is_isomorphism_compose K H) definition equivalence.to_strict_inverse [unfold 3] (H : C ≃c D) : D ⇒ C := H⁻¹ᴱ definition isomorphism.to_strict_inverse [unfold 3] (H : C ≅c D) : D ⇒ C := H⁻¹ˢ definition is_isomorphism_of_is_equivalence [constructor] {C D : Category} (F : C ⇒ D) [H : is_equivalence F] : is_isomorphism F := begin fapply is_isomorphism.mk, { exact F⁻¹ᴱ}, { apply eq_of_iso, apply iso_unit}, { apply eq_of_iso, apply iso_counit}, end definition isomorphism_of_equivalence [constructor] {C D : Category} (F : C ≃c D) : C ≅c D := isomorphism.mk F !is_isomorphism_of_is_equivalence definition equivalence_eq {C : Category} {D : Precategory} {F F' : C ≃c D} (p : equivalence.to_functor F = equivalence.to_functor F') : F = F' := begin induction F, induction F', exact apd011 equivalence.mk p !is_hprop.elim end definition isomorphism_eq {F F' : C ≅c D} (p : isomorphism.to_functor F = isomorphism.to_functor F') : F = F' := begin induction F, induction F', exact apd011 isomorphism.mk p !is_hprop.elim end definition is_equiv_isomorphism_of_equivalence [constructor] (C D : Category) : is_equiv (@equivalence_of_isomorphism C D) := begin fapply adjointify, { exact isomorphism_of_equivalence}, { intro F, apply equivalence_eq, reflexivity}, { intro F, apply isomorphism_eq, reflexivity}, end definition isomorphism_equiv_equivalence [constructor] (C D : Category) : (C ≅c D) ≃ (C ≃c D) := equiv.mk _ !is_equiv_isomorphism_of_equivalence definition isomorphism_of_eq [constructor] {C D : Precategory} (p : C = D) : C ≅c D := isomorphism.MK (functor_of_eq p) (functor_of_eq p⁻¹) (by induction p; reflexivity) (by induction p; reflexivity) definition equiv_ob_of_isomorphism [constructor] {C D : Precategory} (H : C ≅c D) : C ≃ D := equiv.mk H _ definition equiv_hom_of_isomorphism [constructor] {C D : Precategory} (H : C ≅c D) (c c' : C) : c ⟶ c' ≃ H c ⟶ H c' := equiv.mk (to_fun_hom (isomorphism.to_functor H)) _ definition is_equiv_isomorphism_of_eq [constructor] (C D : Precategory) : is_equiv (@isomorphism_of_eq C D) := begin fapply adjointify, { intro H, fapply Precategory_eq_of_equiv, { apply equiv_ob_of_isomorphism H}, { exact equiv_hom_of_isomorphism H}, { /-exact sorry FAILS-/ intros, esimp, apply respect_comp}}, { intro H, apply isomorphism_eq, esimp, fapply functor_eq: esimp, { intro c, exact sorry}, { exact sorry}}, { intro p, induction p, esimp, exact sorry}, end definition eq_equiv_isomorphism [constructor] (C D : Precategory) : (C = D) ≃ (C ≅c D) := equiv.mk _ !is_equiv_isomorphism_of_eq definition equivalence_of_eq [unfold 3] [reducible] {C D : Precategory} (p : C = D) : C ≃c D := equivalence_of_isomorphism (isomorphism_of_eq p) definition eq_equiv_equivalence [constructor] (C D : Category) : (C = D) ≃ (C ≃c D) := !eq_equiv_isomorphism ⬝e !isomorphism_equiv_equivalence /- TODO definition is_equivalence_equiv [constructor] (F : C ⇒ D) : is_equivalence F ≃ (fully_faithful F × split_essentially_surjective F) := sorry definition is_equivalence_equiv_is_weak_equivalence [constructor] {C D : Category} (F : C ⇒ D) : is_equivalence F ≃ is_weak_equivalence F := sorry -/ /- TODO? definition is_isomorphism_equiv1 (F : C ⇒ D) : is_equivalence F ≃ Σ(G : D ⇒ C) (η : 1 = G ∘f F) (ε : F ∘f G = 1), sorry ⬝ ap (λ(H : C ⇒ C), F ∘f H) η ⬝ sorry = ap (λ(H : D ⇒ D), H ∘f F) ε⁻¹ := sorry definition is_isomorphism_equiv2 (F : C ⇒ D) : is_equivalence F ≃ ∃(G : D ⇒ C), 1 = G ∘f F × F ∘f G = 1 := sorry -/ end category