Import kernel. Variable Nat : Type. Alias ℕ : Nat. Namespace Nat. Builtin numeral. Builtin add : Nat → Nat → Nat. Infixl 65 + : add. Builtin mul : Nat → Nat → Nat. Infixl 70 * : mul. Builtin le : Nat → Nat → Bool. Infix 50 <= : le. Infix 50 ≤ : le. Definition ge (a b : Nat) := b ≤ a. Infix 50 >= : ge. Infix 50 ≥ : ge. Definition lt (a b : Nat) := ¬ (a ≥ b). Infix 50 < : lt. Definition gt (a b : Nat) := ¬ (a ≤ b). Infix 50 > : gt. Definition id (a : Nat) := a. Notation 55 | _ | : id. Axiom PlusZero (a : Nat) : a + 0 = a. Axiom PlusSucc (a b : Nat) : a + (b + 1) = (a + b) + 1. Axiom Induction {P : Nat -> Bool} (Hb : P 0) (Hi : Pi (n : Nat) (H : P n), P (n + 1)) (a : Nat) : P a. Theorem ZeroPlus (a : Nat) : 0 + a = a := Induction (show 0 + 0 = 0, Trivial) (fun (n : Nat) (H : 0 + n = n), (show 0 + (n + 1) = n + 1, let L1 : 0 + (n + 1) = (0 + n) + 1 := PlusSucc 0 n in Subst L1 H)) a. Theorem SuccPlus (a b : Nat) : (a + 1) + b = (a + b) + 1 := Induction (show (a + 1) + 0 = (a + 0) + 1, (Subst (PlusZero (a + 1)) (Symm (PlusZero a)))) (fun (n : Nat) (H : (a + 1) + n = (a + n) + 1), (show (a + 1) + (n + 1) = (a + (n + 1)) + 1, let L1 : (a + 1) + (n + 1) = ((a + 1) + n) + 1 := PlusSucc (a + 1) n, L2 : (a + 1) + (n + 1) = ((a + n) + 1) + 1 := Subst L1 H, L3 : (a + n) + 1 = a + (n + 1) := Symm (PlusSucc a n) in Subst L2 L3)) b. Theorem PlusComm (a b : Nat) : a + b = b + a := Induction (show a + 0 = 0 + a, let L1 : a + 0 = a := PlusZero a, L2 : a = 0 + a := Symm (ZeroPlus a) in Trans L1 L2) (fun (n : Nat) (H : a + n = n + a), (show a + (n + 1) = (n + 1) + a, let L1 : a + (n + 1) = (a + n) + 1 := PlusSucc a n, L2 : a + (n + 1) = (n + a) + 1 := Subst L1 H, L3 : (n + a) + 1 = (n + 1) + a := Symm (SuccPlus n a) in Trans L2 L3)) b. SetOpaque ge true. SetOpaque lt true. SetOpaque gt true. SetOpaque id true. EndNamespace.