---------------------------------------------------------------------------------------------------- -- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Leonardo de Moura ---------------------------------------------------------------------------------------------------- import logic.classes.inhabited namespace num -- pos_num and num are two auxiliary datatypes used when parsing numerals such as 13, 0, 26. -- The parser will generate the terms (pos (bit1 (bit1 (bit0 one)))), zero, and (pos (bit0 (bit1 (bit1 one)))). -- This representation can be coerced in whatever we want (e.g., naturals, integers, reals, etc). inductive pos_num : Type := | one : pos_num | bit1 : pos_num → pos_num | bit0 : pos_num → pos_num inductive num : Type := | zero : num | pos : pos_num → num theorem inhabited_pos_num [instance] : inhabited pos_num := inhabited_mk one theorem num_inhabited [instance] : inhabited num := inhabited_mk zero end num