/- Copyright (c) 2014 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn, Jakob von Raumer Ported from Coq HoTT Theorems about products -/ open eq equiv is_equiv is_trunc prod prod.ops unit variables {A A' B B' C D : Type} {P Q : A → Type} {a a' a'' : A} {b b₁ b₂ b' b'' : B} {u v w : A × B} namespace prod /- Paths in a product space -/ protected definition eta [unfold 3] (u : A × B) : (pr₁ u, pr₂ u) = u := by cases u; apply idp definition pair_eq [unfold 7 8] (pa : a = a') (pb : b = b') : (a, b) = (a', b') := by cases pa; cases pb; apply idp definition prod_eq [unfold 3 4 5 6] (H₁ : u.1 = v.1) (H₂ : u.2 = v.2) : u = v := by cases u; cases v; exact pair_eq H₁ H₂ definition eq_pr1 [unfold 5] (p : u = v) : u.1 = v.1 := ap pr1 p definition eq_pr2 [unfold 5] (p : u = v) : u.2 = v.2 := ap pr2 p namespace ops postfix `..1`:(max+1) := eq_pr1 postfix `..2`:(max+1) := eq_pr2 end ops open ops protected definition ap_pr1 (p : u = v) : ap pr1 p = p..1 := idp protected definition ap_pr2 (p : u = v) : ap pr2 p = p..2 := idp definition pair_prod_eq (p : u.1 = v.1) (q : u.2 = v.2) : ((prod_eq p q)..1, (prod_eq p q)..2) = (p, q) := by induction u; induction v; esimp at *; induction p; induction q; reflexivity definition prod_eq_pr1 (p : u.1 = v.1) (q : u.2 = v.2) : (prod_eq p q)..1 = p := (pair_prod_eq p q)..1 definition prod_eq_pr2 (p : u.1 = v.1) (q : u.2 = v.2) : (prod_eq p q)..2 = q := (pair_prod_eq p q)..2 definition prod_eq_eta (p : u = v) : prod_eq (p..1) (p..2) = p := by induction p; induction u; reflexivity -- the uncurried version of prod_eq. We will prove that this is an equivalence definition prod_eq_unc (H : u.1 = v.1 × u.2 = v.2) : u = v := by cases H with H₁ H₂;exact prod_eq H₁ H₂ definition pair_prod_eq_unc : Π(pq : u.1 = v.1 × u.2 = v.2), ((prod_eq_unc pq)..1, (prod_eq_unc pq)..2) = pq | pair_prod_eq_unc (pq₁, pq₂) := pair_prod_eq pq₁ pq₂ definition prod_eq_unc_pr1 (pq : u.1 = v.1 × u.2 = v.2) : (prod_eq_unc pq)..1 = pq.1 := (pair_prod_eq_unc pq)..1 definition prod_eq_unc_pr2 (pq : u.1 = v.1 × u.2 = v.2) : (prod_eq_unc pq)..2 = pq.2 := (pair_prod_eq_unc pq)..2 definition prod_eq_unc_eta (p : u = v) : prod_eq_unc (p..1, p..2) = p := prod_eq_eta p definition is_equiv_prod_eq [instance] [constructor] (u v : A × B) : is_equiv (prod_eq_unc : u.1 = v.1 × u.2 = v.2 → u = v) := adjointify prod_eq_unc (λp, (p..1, p..2)) prod_eq_unc_eta pair_prod_eq_unc definition prod_eq_equiv [constructor] (u v : A × B) : (u = v) ≃ (u.1 = v.1 × u.2 = v.2) := (equiv.mk prod_eq_unc _)⁻¹ᵉ /- Groupoid structure -/ definition prod_eq_inv (p : a = a') (q : b = b') : (prod_eq p q)⁻¹ = prod_eq p⁻¹ q⁻¹ := by cases p; cases q; reflexivity definition prod_eq_concat (p : a = a') (p' : a' = a'') (q : b = b') (q' : b' = b'') : prod_eq p q ⬝ prod_eq p' q' = prod_eq (p ⬝ p') (q ⬝ q') := by cases p; cases q; cases p'; cases q'; reflexivity /- Transport -/ definition prod_transport (p : a = a') (u : P a × Q a) : p ▸ u = (p ▸ u.1, p ▸ u.2) := by induction p; induction u; reflexivity definition prod_eq_transport (p : a = a') (q : b = b') {R : A × B → Type} (r : R (a, b)) : (prod_eq p q) ▸ r = p ▸ q ▸ r := by induction p; induction q; reflexivity /- Pathovers -/ definition etao (p : a = a') (bc : P a × Q a) : bc =[p] (p ▸ bc.1, p ▸ bc.2) := by induction p; induction bc; apply idpo definition prod_pathover (p : a = a') (u : P a × Q a) (v : P a' × Q a') (r : u.1 =[p] v.1) (s : u.2 =[p] v.2) : u =[p] v := begin induction u, induction v, esimp at *, induction r, induction s using idp_rec_on, apply idpo end /- TODO: * define the projections from the type u =[p] v * show that the uncurried version of prod_pathover is an equivalence -/ /- Functorial action -/ variables (f : A → A') (g : B → B') definition prod_functor [unfold 7] (u : A × B) : A' × B' := (f u.1, g u.2) definition ap_prod_functor (p : u.1 = v.1) (q : u.2 = v.2) : ap (prod_functor f g) (prod_eq p q) = prod_eq (ap f p) (ap g q) := by induction u; induction v; esimp at *; induction p; induction q; reflexivity /- Helpers for functions of two arguments -/ definition ap_diagonal {a a' : A} (p : a = a') : ap (λx : A, (x,x)) p = prod_eq p p := by cases p; constructor definition ap_binary (m : A → B → C) (p : a = a') (q : b = b') : ap (λz : A × B, m z.1 z.2) (prod_eq p q) = (ap (m a) q) ⬝ (ap (λx : A, m x b') p) := by cases p; cases q; constructor /- Equivalences -/ definition is_equiv_prod_functor [instance] [constructor] [H : is_equiv f] [H : is_equiv g] : is_equiv (prod_functor f g) := begin apply adjointify _ (prod_functor f⁻¹ g⁻¹), intro u, induction u, rewrite [▸*,right_inv f,right_inv g], intro u, induction u, rewrite [▸*,left_inv f,left_inv g], end definition prod_equiv_prod_of_is_equiv [constructor] [H : is_equiv f] [H : is_equiv g] : A × B ≃ A' × B' := equiv.mk (prod_functor f g) _ definition prod_equiv_prod [constructor] (f : A ≃ A') (g : B ≃ B') : A × B ≃ A' × B' := equiv.mk (prod_functor f g) _ definition prod_equiv_prod_left [constructor] (g : B ≃ B') : A × B ≃ A × B' := prod_equiv_prod equiv.rfl g definition prod_equiv_prod_right [constructor] (f : A ≃ A') : A × B ≃ A' × B := prod_equiv_prod f equiv.rfl /- Symmetry -/ definition is_equiv_flip [instance] [constructor] (A B : Type) : is_equiv (flip : A × B → B × A) := adjointify flip flip (λu, destruct u (λb a, idp)) (λu, destruct u (λa b, idp)) definition prod_comm_equiv [constructor] (A B : Type) : A × B ≃ B × A := equiv.mk flip _ /- Associativity -/ definition prod_assoc_equiv [constructor] (A B C : Type) : A × (B × C) ≃ (A × B) × C := begin fapply equiv.MK, { intro z, induction z with a z, induction z with b c, exact (a, b, c)}, { intro z, induction z with z c, induction z with a b, exact (a, (b, c))}, { intro z, induction z with z c, induction z with a b, reflexivity}, { intro z, induction z with a z, induction z with b c, reflexivity}, end definition prod_contr_equiv [constructor] (A B : Type) [H : is_contr B] : A × B ≃ A := equiv.MK pr1 (λx, (x, !center)) (λx, idp) (λx, by cases x with a b; exact pair_eq idp !center_eq) definition prod_unit_equiv [constructor] (A : Type) : A × unit ≃ A := !prod_contr_equiv definition prod_empty_equiv (A : Type) : A × empty ≃ empty := begin fapply equiv.MK, { intro x, cases x with a e, cases e }, { intro e, cases e }, { intro e, cases e }, { intro x, cases x with a e, cases e } end /- Universal mapping properties -/ definition is_equiv_prod_rec [instance] [constructor] (P : A × B → Type) : is_equiv (prod.rec : (Πa b, P (a, b)) → Πu, P u) := adjointify _ (λg a b, g (a, b)) (λg, eq_of_homotopy (λu, by induction u;reflexivity)) (λf, idp) definition equiv_prod_rec [constructor] (P : A × B → Type) : (Πa b, P (a, b)) ≃ (Πu, P u) := equiv.mk prod.rec _ definition imp_imp_equiv_prod_imp (A B C : Type) : (A → B → C) ≃ (A × B → C) := !equiv_prod_rec definition prod_corec_unc [unfold 4] {P Q : A → Type} (u : (Πa, P a) × (Πa, Q a)) (a : A) : P a × Q a := (u.1 a, u.2 a) definition is_equiv_prod_corec [constructor] (P Q : A → Type) : is_equiv (prod_corec_unc : (Πa, P a) × (Πa, Q a) → Πa, P a × Q a) := adjointify _ (λg, (λa, (g a).1, λa, (g a).2)) (by intro g; apply eq_of_homotopy; intro a; esimp; induction (g a); reflexivity) (by intro h; induction h with f g; reflexivity) definition equiv_prod_corec [constructor] (P Q : A → Type) : ((Πa, P a) × (Πa, Q a)) ≃ (Πa, P a × Q a) := equiv.mk _ !is_equiv_prod_corec definition imp_prod_imp_equiv_imp_prod [constructor] (A B C : Type) : (A → B) × (A → C) ≃ (A → (B × C)) := !equiv_prod_corec theorem is_trunc_prod (A B : Type) (n : trunc_index) [HA : is_trunc n A] [HB : is_trunc n B] : is_trunc n (A × B) := begin revert A B HA HB, induction n with n IH, all_goals intro A B HA HB, { fapply is_contr.mk, exact (!center, !center), intro u, apply prod_eq, all_goals apply center_eq}, { apply is_trunc_succ_intro, intro u v, apply is_trunc_equiv_closed_rev, apply prod_eq_equiv, exact IH _ _ _ _} end end prod attribute prod.is_trunc_prod [instance] [priority 1510] definition tprod [constructor] {n : trunc_index} (A B : n-Type) : n-Type := trunctype.mk (A × B) _ infixr `×t`:30 := tprod