-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Leonardo de Moura import logic.core.connectives inductive decidable (p : Prop) : Type := inl : p → decidable p, inr : ¬p → decidable p namespace decidable theorem true_decidable [instance] : decidable true := inl trivial theorem false_decidable [instance] : decidable false := inr not_false_trivial protected theorem induction_on {p : Prop} {C : Prop} (H : decidable p) (H1 : p → C) (H2 : ¬p → C) : C := decidable.rec H1 H2 H protected definition rec_on {p : Prop} {C : Type} (H : decidable p) (H1 : p → C) (H2 : ¬p → C) : C := decidable.rec H1 H2 H theorem irrelevant {p : Prop} (d1 d2 : decidable p) : d1 = d2 := decidable.rec (assume Hp1 : p, decidable.rec (assume Hp2 : p, congr_arg inl (eq.refl Hp1)) -- using proof irrelevance for Prop (assume Hnp2 : ¬p, absurd Hp1 Hnp2) d2) (assume Hnp1 : ¬p, decidable.rec (assume Hp2 : p, absurd Hp2 Hnp1) (assume Hnp2 : ¬p, congr_arg inr (eq.refl Hnp1)) -- using proof irrelevance for Prop d2) d1 theorem em (p : Prop) {H : decidable p} : p ∨ ¬p := induction_on H (λ Hp, or.inl Hp) (λ Hnp, or.inr Hnp) theorem by_cases {a : Prop} {b : Type} {C : decidable a} (Hab : a → b) (Hnab : ¬a → b) : b := rec_on C (assume Ha, Hab Ha) (assume Hna, Hnab Hna) theorem by_contradiction {p : Prop} {Hp : decidable p} (H : ¬p → false) : p := or.elim (em p) (assume H1 : p, H1) (assume H1 : ¬p, false_elim (H H1)) theorem and_decidable [instance] {a b : Prop} (Ha : decidable a) (Hb : decidable b) : decidable (a ∧ b) := rec_on Ha (assume Ha : a, rec_on Hb (assume Hb : b, inl (and.intro Ha Hb)) (assume Hnb : ¬b, inr (and.not_right a Hnb))) (assume Hna : ¬a, inr (and.not_left b Hna)) theorem or_decidable [instance] {a b : Prop} (Ha : decidable a) (Hb : decidable b) : decidable (a ∨ b) := rec_on Ha (assume Ha : a, inl (or.inl Ha)) (assume Hna : ¬a, rec_on Hb (assume Hb : b, inl (or.inr Hb)) (assume Hnb : ¬b, inr (or.not_intro Hna Hnb))) theorem not_decidable [instance] {a : Prop} (Ha : decidable a) : decidable (¬a) := rec_on Ha (assume Ha, inr (not_not_intro Ha)) (assume Hna, inl Hna) theorem iff_decidable [instance] {a b : Prop} (Ha : decidable a) (Hb : decidable b) : decidable (a ↔ b) := rec_on Ha (assume Ha, rec_on Hb (assume Hb : b, inl (iff.intro (assume H, Hb) (assume H, Ha))) (assume Hnb : ¬b, inr (assume H : a ↔ b, absurd (iff.elim_left H Ha) Hnb))) (assume Hna, rec_on Hb (assume Hb : b, inr (assume H : a ↔ b, absurd (iff.elim_right H Hb) Hna)) (assume Hnb : ¬b, inl (iff.intro (assume Ha, absurd Ha Hna) (assume Hb, absurd Hb Hnb)))) theorem implies_decidable [instance] {a b : Prop} (Ha : decidable a) (Hb : decidable b) : decidable (a → b) := rec_on Ha (assume Ha : a, rec_on Hb (assume Hb : b, inl (assume H, Hb)) (assume Hnb : ¬b, inr (assume H : a → b, absurd (H Ha) Hnb))) (assume Hna : ¬a, inl (assume Ha, absurd Ha Hna)) theorem decidable_iff_equiv {a b : Prop} (Ha : decidable a) (H : a ↔ b) : decidable b := rec_on Ha (assume Ha : a, inl (iff.elim_left H Ha)) (assume Hna : ¬a, inr (iff.elim_left (iff.flip_sign H) Hna)) theorem decidable_eq_equiv {a b : Prop} (Ha : decidable a) (H : a = b) : decidable b := decidable_iff_equiv Ha (eq_to_iff H) end decidable definition decidable_eq (A : Type) := Π (a b : A), decidable (a = b)