-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Authors: Jeremy Avigad, Leonardo de Moura -- logic.connectives.identities -- ============================ -- Useful logical identities. In the absence of propositional extensionality, some of the -- calculations use the type class support provided by logic.connectives.instances import logic.core.instances logic.core.decidable logic.core.quantifiers logic.core.cast open relation decidable relation.iff_ops theorem or_right_comm (a b c : Prop) : (a ∨ b) ∨ c ↔ (a ∨ c) ∨ b := calc (a ∨ b) ∨ c ↔ a ∨ (b ∨ c) : or.assoc ... ↔ a ∨ (c ∨ b) : {or.comm} ... ↔ (a ∨ c) ∨ b : iff.symm or.assoc theorem or_left_comm (a b c : Prop) : a ∨ (b ∨ c)↔ b ∨ (a ∨ c) := calc a ∨ (b ∨ c) ↔ (a ∨ b) ∨ c : iff.symm or.assoc ... ↔ (b ∨ a) ∨ c : {or.comm} ... ↔ b ∨ (a ∨ c) : or.assoc theorem and_right_comm (a b c : Prop) : (a ∧ b) ∧ c ↔ (a ∧ c) ∧ b := calc (a ∧ b) ∧ c ↔ a ∧ (b ∧ c) : and.assoc ... ↔ a ∧ (c ∧ b) : {and.comm} ... ↔ (a ∧ c) ∧ b : iff.symm and.assoc theorem and_left_comm (a b c : Prop) : a ∧ (b ∧ c)↔ b ∧ (a ∧ c) := calc a ∧ (b ∧ c) ↔ (a ∧ b) ∧ c : iff.symm and.assoc ... ↔ (b ∧ a) ∧ c : {and.comm} ... ↔ b ∧ (a ∧ c) : and.assoc theorem not_not_iff {a : Prop} {D : decidable a} : (¬¬a) ↔ a := iff.intro (assume H : ¬¬a, by_cases (assume H' : a, H') (assume H' : ¬a, absurd H' H)) (assume H : a, assume H', H' H) theorem not_not_elim {a : Prop} {D : decidable a} (H : ¬¬a) : a := iff.mp not_not_iff H theorem not_true : (¬true) ↔ false := iff.intro (assume H, H trivial) false_elim theorem not_false : (¬false) ↔ true := iff.intro (assume H, trivial) (assume H H', H') theorem not_or {a b : Prop} {Da : decidable a} {Db : decidable b} : (¬(a ∨ b)) ↔ (¬a ∧ ¬b) := iff.intro (assume H, or.elim (em a) (assume Ha, absurd (or.inl Ha) H) (assume Hna, or.elim (em b) (assume Hb, absurd (or.inr Hb) H) (assume Hnb, and.intro Hna Hnb))) (assume (H : ¬a ∧ ¬b) (N : a ∨ b), or.elim N (assume Ha, absurd Ha (and.elim_left H)) (assume Hb, absurd Hb (and.elim_right H))) theorem not_and {a b : Prop} {Da : decidable a} {Db : decidable b} : (¬(a ∧ b)) ↔ (¬a ∨ ¬b) := iff.intro (assume H, or.elim (em a) (assume Ha, or.elim (em b) (assume Hb, absurd (and.intro Ha Hb) H) (assume Hnb, or.inr Hnb)) (assume Hna, or.inl Hna)) (assume (H : ¬a ∨ ¬b) (N : a ∧ b), or.elim H (assume Hna, absurd (and.elim_left N) Hna) (assume Hnb, absurd (and.elim_right N) Hnb)) theorem imp_or {a b : Prop} {Da : decidable a} : (a → b) ↔ (¬a ∨ b) := iff.intro (assume H : a → b, (or.elim (em a) (assume Ha : a, or.inr (H Ha)) (assume Hna : ¬a, or.inl Hna))) (assume (H : ¬a ∨ b) (Ha : a), or.resolve_right H (not_not_iff⁻¹ ▸ Ha)) theorem not_implies {a b : Prop} {Da : decidable a} {Db : decidable b} : (¬(a → b)) ↔ (a ∧ ¬b) := calc (¬(a → b)) ↔ (¬(¬a ∨ b)) : {imp_or} ... ↔ (¬¬a ∧ ¬b) : not_or ... ↔ (a ∧ ¬b) : {not_not_iff} theorem peirce {a b : Prop} {D : decidable a} : ((a → b) → a) → a := assume H, by_contradiction (assume Hna : ¬a, have Hnna : ¬¬a, from not_implies_left (mt H Hna), absurd (not_not_elim Hnna) Hna) theorem not_exists_forall {A : Type} {P : A → Prop} {D : ∀x, decidable (P x)} (H : ¬∃x, P x) : ∀x, ¬P x := take x, or.elim (em (P x)) (assume Hp : P x, absurd (exists_intro x Hp) H) (assume Hn : ¬P x, Hn) theorem not_forall_exists {A : Type} {P : A → Prop} {D : ∀x, decidable (P x)} {D' : decidable (∃x, ¬P x)} (H : ¬∀x, P x) : ∃x, ¬P x := @by_contradiction _ D' (assume H1 : ¬∃x, ¬P x, have H2 : ∀x, ¬¬P x, from @not_exists_forall _ _ (take x, not_decidable (D x)) H1, have H3 : ∀x, P x, from take x, @not_not_elim _ (D x) (H2 x), absurd H3 H) theorem iff_true_intro {a : Prop} (H : a) : a ↔ true := iff.intro (assume H1 : a, trivial) (assume H2 : true, H) theorem iff_false_intro {a : Prop} (H : ¬a) : a ↔ false := iff.intro (assume H1 : a, absurd H1 H) (assume H2 : false, false_elim H2) theorem a_neq_a {A : Type} (a : A) : (a ≠ a) ↔ false := iff.intro (assume H, a_neq_a_elim H) (assume H, false_elim H) theorem eq_id {A : Type} (a : A) : (a = a) ↔ true := iff_true_intro rfl theorem heq_id {A : Type} (a : A) : (a == a) ↔ true := iff_true_intro (hrefl a) theorem a_iff_not_a (a : Prop) : (a ↔ ¬a) ↔ false := iff.intro (assume H, have H' : ¬a, from assume Ha, (H ▸ Ha) Ha, H' (H⁻¹ ▸ H')) (assume H, false_elim H) theorem true_eq_false : (true ↔ false) ↔ false := not_true ▸ (a_iff_not_a true) theorem false_eq_true : (false ↔ true) ↔ false := not_false ▸ (a_iff_not_a false) theorem a_eq_true (a : Prop) : (a ↔ true) ↔ a := iff.intro (assume H, iff.true_elim H) (assume H, iff_true_intro H) theorem a_eq_false (a : Prop) : (a ↔ false) ↔ ¬a := iff.intro (assume H, iff.false_elim H) (assume H, iff_false_intro H)