import kernel import macros variable Nat : Type alias ℕ : Nat namespace Nat builtin numeral builtin add : Nat → Nat → Nat infixl 65 + : add builtin mul : Nat → Nat → Nat infixl 70 * : mul builtin le : Nat → Nat → Bool infix 50 <= : le infix 50 ≤ : le definition ge (a b : Nat) := b ≤ a infix 50 >= : ge infix 50 ≥ : ge definition lt (a b : Nat) := ¬ (a ≥ b) infix 50 < : lt definition gt (a b : Nat) := ¬ (a ≤ b) infix 50 > : gt definition id (a : Nat) := a notation 55 | _ | : id axiom succ::nz (a : Nat) : a + 1 ≠ 0 axiom succ::inj {a b : Nat} (H : a + 1 = b + 1) : a = b axiom add::zeror (a : Nat) : a + 0 = a axiom add::succr (a b : Nat) : a + (b + 1) = (a + b) + 1 axiom mul::zeror (a : Nat) : a * 0 = 0 axiom mul::succr (a b : Nat) : a * (b + 1) = a * b + a axiom le::def (a b : Nat) : a ≤ b ⇔ ∃ c, a + c = b axiom induction {P : Nat → Bool} (a : Nat) (H1 : P 0) (H2 : Π (n : Nat) (iH : P n), P (n + 1)) : P a theorem pred::nz' (a : Nat) : a ≠ 0 ⇒ ∃ b, b + 1 = a := induction a (assume H : 0 ≠ 0, false::elim (∃ b, b + 1 = 0) H) (λ (n : Nat) (iH : n ≠ 0 ⇒ ∃ b, b + 1 = n), assume H : n + 1 ≠ 0, or::elim (em (n = 0)) (λ Heq0 : n = 0, exists::intro 0 (calc 0 + 1 = n + 1 : { symm Heq0 })) (λ Hne0 : n ≠ 0, obtain (w : Nat) (Hw : w + 1 = n), from (iH ◂ Hne0), exists::intro (w + 1) (calc w + 1 + 1 = n + 1 : { Hw }))) theorem pred::nz {a : Nat} (H : a ≠ 0) : ∃ b, b + 1 = a := (pred::nz' a) ◂ H theorem destruct {B : Bool} {a : Nat} (H1: a = 0 → B) (H2 : Π n, a = n + 1 → B) : B := or::elim (em (a = 0)) (λ Heq0 : a = 0, H1 Heq0) (λ Hne0 : a ≠ 0, obtain (w : Nat) (Hw : w + 1 = a), from (pred::nz Hne0), H2 w (symm Hw)) theorem add::zerol (a : Nat) : 0 + a = a := induction a (have 0 + 0 = 0 : trivial) (λ (n : Nat) (iH : 0 + n = n), calc 0 + (n + 1) = (0 + n) + 1 : add::succr 0 n ... = n + 1 : { iH }) theorem add::succl (a b : Nat) : (a + 1) + b = (a + b) + 1 := induction b (calc (a + 1) + 0 = a + 1 : add::zeror (a + 1) ... = (a + 0) + 1 : { symm (add::zeror a) }) (λ (n : Nat) (iH : (a + 1) + n = (a + n) + 1), calc (a + 1) + (n + 1) = ((a + 1) + n) + 1 : add::succr (a + 1) n ... = ((a + n) + 1) + 1 : { iH } ... = (a + (n + 1)) + 1 : { have (a + n) + 1 = a + (n + 1) : symm (add::succr a n) }) theorem add::comm (a b : Nat) : a + b = b + a := induction b (calc a + 0 = a : add::zeror a ... = 0 + a : symm (add::zerol a)) (λ (n : Nat) (iH : a + n = n + a), calc a + (n + 1) = (a + n) + 1 : add::succr a n ... = (n + a) + 1 : { iH } ... = (n + 1) + a : symm (add::succl n a)) theorem add::assoc (a b c : Nat) : a + (b + c) = (a + b) + c := induction a (calc 0 + (b + c) = b + c : add::zerol (b + c) ... = (0 + b) + c : { symm (add::zerol b) }) (λ (n : Nat) (iH : n + (b + c) = (n + b) + c), calc (n + 1) + (b + c) = (n + (b + c)) + 1 : add::succl n (b + c) ... = ((n + b) + c) + 1 : { iH } ... = ((n + b) + 1) + c : symm (add::succl (n + b) c) ... = ((n + 1) + b) + c : { have (n + b) + 1 = (n + 1) + b : symm (add::succl n b) }) theorem mul::zerol (a : Nat) : 0 * a = 0 := induction a (have 0 * 0 = 0 : trivial) (λ (n : Nat) (iH : 0 * n = 0), calc 0 * (n + 1) = (0 * n) + 0 : mul::succr 0 n ... = 0 + 0 : { iH } ... = 0 : trivial) theorem mul::succl (a b : Nat) : (a + 1) * b = a * b + b := induction b (calc (a + 1) * 0 = 0 : mul::zeror (a + 1) ... = a * 0 : symm (mul::zeror a) ... = a * 0 + 0 : symm (add::zeror (a * 0))) (λ (n : Nat) (iH : (a + 1) * n = a * n + n), calc (a + 1) * (n + 1) = (a + 1) * n + (a + 1) : mul::succr (a + 1) n ... = a * n + n + (a + 1) : { iH } ... = a * n + n + a + 1 : add::assoc (a * n + n) a 1 ... = a * n + (n + a) + 1 : { have a * n + n + a = a * n + (n + a) : symm (add::assoc (a * n) n a) } ... = a * n + (a + n) + 1 : { add::comm n a } ... = a * n + a + n + 1 : { add::assoc (a * n) a n } ... = a * (n + 1) + n + 1 : { symm (mul::succr a n) } ... = a * (n + 1) + (n + 1) : symm (add::assoc (a * (n + 1)) n 1)) theorem mul::lhs::one (a : Nat) : 1 * a = a := induction a (have 1 * 0 = 0 : trivial) (λ (n : Nat) (iH : 1 * n = n), calc 1 * (n + 1) = 1 * n + 1 : mul::succr 1 n ... = n + 1 : { iH }) theorem mul::rhs::one (a : Nat) : a * 1 = a := induction a (have 0 * 1 = 0 : trivial) (λ (n : Nat) (iH : n * 1 = n), calc (n + 1) * 1 = n * 1 + 1 : mul::succl n 1 ... = n + 1 : { iH }) theorem mul::comm (a b : Nat) : a * b = b * a := induction b (calc a * 0 = 0 : mul::zeror a ... = 0 * a : symm (mul::zerol a)) (λ (n : Nat) (iH : a * n = n * a), calc a * (n + 1) = a * n + a : mul::succr a n ... = n * a + a : { iH } ... = (n + 1) * a : symm (mul::succl n a)) theorem distribute (a b c : Nat) : a * (b + c) = a * b + a * c := induction a (calc 0 * (b + c) = 0 : mul::zerol (b + c) ... = 0 + 0 : trivial ... = 0 * b + 0 : { symm (mul::zerol b) } ... = 0 * b + 0 * c : { symm (mul::zerol c) }) (λ (n : Nat) (iH : n * (b + c) = n * b + n * c), calc (n + 1) * (b + c) = n * (b + c) + (b + c) : mul::succl n (b + c) ... = n * b + n * c + (b + c) : { iH } ... = n * b + n * c + b + c : add::assoc (n * b + n * c) b c ... = n * b + (n * c + b) + c : { symm (add::assoc (n * b) (n * c) b) } ... = n * b + (b + n * c) + c : { add::comm (n * c) b } ... = n * b + b + n * c + c : { add::assoc (n * b) b (n * c) } ... = (n + 1) * b + n * c + c : { symm (mul::succl n b) } ... = (n + 1) * b + (n * c + c) : symm (add::assoc ((n + 1) * b) (n * c) c) ... = (n + 1) * b + (n + 1) * c : { symm (mul::succl n c) }) theorem distribute2 (a b c : Nat) : (a + b) * c = a * c + b * c := calc (a + b) * c = c * (a + b) : mul::comm (a + b) c ... = c * a + c * b : distribute c a b ... = a * c + c * b : { mul::comm c a } ... = a * c + b * c : { mul::comm c b } theorem mul::assoc (a b c : Nat) : a * (b * c) = a * b * c := induction a (calc 0 * (b * c) = 0 : mul::zerol (b * c) ... = 0 * c : symm (mul::zerol c) ... = (0 * b) * c : { symm (mul::zerol b) }) (λ (n : Nat) (iH : n * (b * c) = n * b * c), calc (n + 1) * (b * c) = n * (b * c) + (b * c) : mul::succl n (b * c) ... = n * b * c + (b * c) : { iH } ... = (n * b + b) * c : symm (distribute2 (n * b) b c) ... = (n + 1) * b * c : { symm (mul::succl n b) }) theorem add::inj' (a b c : Nat) : a + b = a + c ⇒ b = c := induction a (assume H : 0 + b = 0 + c, calc b = 0 + b : symm (add::zerol b) ... = 0 + c : H ... = c : add::zerol c) (λ (n : Nat) (iH : n + b = n + c ⇒ b = c), assume H : n + 1 + b = n + 1 + c, let L1 : n + b + 1 = n + c + 1 := (calc n + b + 1 = n + (b + 1) : symm (add::assoc n b 1) ... = n + (1 + b) : { add::comm b 1 } ... = n + 1 + b : add::assoc n 1 b ... = n + 1 + c : H ... = n + (1 + c) : symm (add::assoc n 1 c) ... = n + (c + 1) : { add::comm 1 c } ... = n + c + 1 : add::assoc n c 1), L2 : n + b = n + c := succ::inj L1 in iH ◂ L2) theorem add::inj {a b c : Nat} (H : a + b = a + c) : b = c := (add::inj' a b c) ◂ H theorem add::eqz {a b : Nat} (H : a + b = 0) : a = 0 := destruct (λ H1 : a = 0, H1) (λ (n : Nat) (H1 : a = n + 1), absurd::elim (a = 0) H (calc a + b = n + 1 + b : { H1 } ... = n + (1 + b) : symm (add::assoc n 1 b) ... = n + (b + 1) : { add::comm 1 b } ... = n + b + 1 : add::assoc n b 1 ... ≠ 0 : succ::nz (n + b))) theorem le::intro {a b c : Nat} (H : a + c = b) : a ≤ b := (symm (le::def a b)) ◂ (have (∃ x, a + x = b) : exists::intro c H) theorem le::elim {a b : Nat} (H : a ≤ b) : ∃ x, a + x = b := (le::def a b) ◂ H theorem le::refl (a : Nat) : a ≤ a := le::intro (add::zeror a) theorem le::zero (a : Nat) : 0 ≤ a := le::intro (add::zerol a) theorem le::trans {a b c : Nat} (H1 : a ≤ b) (H2 : b ≤ c) : a ≤ c := obtain (w1 : Nat) (Hw1 : a + w1 = b), from (le::elim H1), obtain (w2 : Nat) (Hw2 : b + w2 = c), from (le::elim H2), le::intro (calc a + (w1 + w2) = a + w1 + w2 : add::assoc a w1 w2 ... = b + w2 : { Hw1 } ... = c : Hw2) theorem le::add {a b : Nat} (H : a ≤ b) (c : Nat) : a + c ≤ b + c := obtain (w : Nat) (Hw : a + w = b), from (le::elim H), le::intro (calc a + c + w = a + (c + w) : symm (add::assoc a c w) ... = a + (w + c) : { add::comm c w } ... = a + w + c : add::assoc a w c ... = b + c : { Hw }) theorem le::antisym {a b : Nat} (H1 : a ≤ b) (H2 : b ≤ a) : a = b := obtain (w1 : Nat) (Hw1 : a + w1 = b), from (le::elim H1), obtain (w2 : Nat) (Hw2 : b + w2 = a), from (le::elim H2), let L1 : w1 + w2 = 0 := add::inj (calc a + (w1 + w2) = a + w1 + w2 : { add::assoc a w1 w2 } ... = b + w2 : { Hw1 } ... = a : Hw2 ... = a + 0 : symm (add::zeror a)), L2 : w1 = 0 := add::eqz L1 in calc a = a + 0 : symm (add::zeror a) ... = a + w1 : { symm L2 } ... = b : Hw1 set::opaque ge true set::opaque lt true set::opaque gt true set::opaque id true end