/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn, Jakob von Raumer Functor precategory and category -/ import ..nat_trans ..category .opposite open eq category is_trunc nat_trans iso is_equiv category.hom namespace functor definition precategory_functor [instance] [constructor] (D C : Precategory) : precategory (functor C D) := precategory.mk (λa b, nat_trans a b) (λ a b c g f, nat_trans.compose g f) (λ a, nat_trans.id) (λ a b c d h g f, !nat_trans.assoc) (λ a b f, !nat_trans.id_left) (λ a b f, !nat_trans.id_right) definition Precategory_functor [reducible] [constructor] (D C : Precategory) : Precategory := precategory.Mk (precategory_functor D C) infixr ` ^c `:80 := Precategory_functor section /- we prove that if a natural transformation is pointwise an iso, then it is an iso -/ variables {C D : Precategory} {F G : C ⇒ D} (η : F ⟹ G) [iso : Π(a : C), is_iso (η a)] include iso definition nat_trans_inverse [constructor] : G ⟹ F := nat_trans.mk (λc, (η c)⁻¹) (λc d f, abstract begin apply comp_inverse_eq_of_eq_comp, transitivity (natural_map η d)⁻¹ ∘ to_fun_hom G f ∘ natural_map η c, {apply eq_inverse_comp_of_comp_eq, symmetry, apply naturality}, {apply assoc} end end) definition nat_trans_left_inverse : nat_trans_inverse η ∘n η = 1 := begin fapply (apd011 nat_trans.mk), apply eq_of_homotopy, intro c, apply left_inverse, apply eq_of_homotopy, intros, apply eq_of_homotopy, intros, apply eq_of_homotopy, intros, apply is_set.elim end definition nat_trans_right_inverse : η ∘n nat_trans_inverse η = 1 := begin fapply (apd011 nat_trans.mk), apply eq_of_homotopy, intro c, apply right_inverse, apply eq_of_homotopy, intros, apply eq_of_homotopy, intros, apply eq_of_homotopy, intros, apply is_set.elim end definition is_natural_iso [constructor] : is_iso η := is_iso.mk _ (nat_trans_left_inverse η) (nat_trans_right_inverse η) variable (iso) definition natural_iso.mk [constructor] : F ≅ G := iso.mk _ (is_natural_iso η) omit iso variables (F G) definition is_natural_inverse (η : Πc, F c ≅ G c) (nat : Π⦃a b : C⦄ (f : hom a b), G f ∘ to_hom (η a) = to_hom (η b) ∘ F f) {a b : C} (f : hom a b) : F f ∘ to_inv (η a) = to_inv (η b) ∘ G f := let η' : F ⟹ G := nat_trans.mk (λc, to_hom (η c)) @nat in naturality (nat_trans_inverse η') f definition is_natural_inverse' (η₁ : Πc, F c ≅ G c) (η₂ : F ⟹ G) (p : η₁ ~ η₂) {a b : C} (f : hom a b) : F f ∘ to_inv (η₁ a) = to_inv (η₁ b) ∘ G f := is_natural_inverse F G η₁ abstract λa b g, (p a)⁻¹ ▸ (p b)⁻¹ ▸ naturality η₂ g end f variables {F G} definition natural_iso.MK [constructor] (η : Πc, F c ⟶ G c) (p : Π(c c' : C) (f : c ⟶ c'), G f ∘ η c = η c' ∘ F f) (θ : Πc, G c ⟶ F c) (r : Πc, θ c ∘ η c = id) (q : Πc, η c ∘ θ c = id) : F ≅ G := iso.mk (nat_trans.mk η p) (@(is_natural_iso _) (λc, is_iso.mk (θ c) (r c) (q c))) end section /- and conversely, if a natural transformation is an iso, it is componentwise an iso -/ variables {A B C D : Precategory} {F G : C ⇒ D} (η : hom F G) [isoη : is_iso η] (c : C) include isoη definition componentwise_is_iso [constructor] : is_iso (η c) := @is_iso.mk _ _ _ _ _ (natural_map η⁻¹ c) (ap010 natural_map ( left_inverse η) c) (ap010 natural_map (right_inverse η) c) local attribute componentwise_is_iso [instance] variable {isoη} definition natural_map_inverse : natural_map η⁻¹ c = (η c)⁻¹ := idp variable [isoη] definition naturality_iso {c c' : C} (f : c ⟶ c') : G f = η c' ∘ F f ∘ (η c)⁻¹ := calc G f = (G f ∘ η c) ∘ (η c)⁻¹ : by rewrite comp_inverse_cancel_right ... = (η c' ∘ F f) ∘ (η c)⁻¹ : by rewrite naturality ... = η c' ∘ F f ∘ (η c)⁻¹ : by rewrite assoc definition naturality_iso' {c c' : C} (f : c ⟶ c') : (η c')⁻¹ ∘ G f ∘ η c = F f := calc (η c')⁻¹ ∘ G f ∘ η c = (η c')⁻¹ ∘ η c' ∘ F f : by rewrite naturality ... = F f : by rewrite inverse_comp_cancel_left omit isoη definition componentwise_iso (η : F ≅ G) (c : C) : F c ≅ G c := iso.mk (natural_map (to_hom η) c) (@componentwise_is_iso _ _ _ _ (to_hom η) (struct η) c) definition componentwise_iso_id (c : C) : componentwise_iso (iso.refl F) c = iso.refl (F c) := iso_eq (idpath (ID (F c))) definition componentwise_iso_iso_of_eq (p : F = G) (c : C) : componentwise_iso (iso_of_eq p) c = iso_of_eq (ap010 to_fun_ob p c) := eq.rec_on p !componentwise_iso_id theorem naturality_iso_id {F : C ⇒ C} (η : F ≅ 1) (c : C) : componentwise_iso η (F c) = F (componentwise_iso η c) := comp.cancel_left (to_hom (componentwise_iso η c)) ((naturality (to_hom η)) (to_hom (componentwise_iso η c))) definition natural_map_hom_of_eq (p : F = G) (c : C) : natural_map (hom_of_eq p) c = hom_of_eq (ap010 to_fun_ob p c) := eq.rec_on p idp definition natural_map_inv_of_eq (p : F = G) (c : C) : natural_map (inv_of_eq p) c = hom_of_eq (ap010 to_fun_ob p c)⁻¹ := eq.rec_on p idp definition hom_of_eq_compose_right {H : B ⇒ C} (p : F = G) : hom_of_eq (ap (λx, x ∘f H) p) = hom_of_eq p ∘nf H := eq.rec_on p idp definition inv_of_eq_compose_right {H : B ⇒ C} (p : F = G) : inv_of_eq (ap (λx, x ∘f H) p) = inv_of_eq p ∘nf H := eq.rec_on p idp definition hom_of_eq_compose_left {H : D ⇒ C} (p : F = G) : hom_of_eq (ap (λx, H ∘f x) p) = H ∘fn hom_of_eq p := by induction p; exact !fn_id⁻¹ definition inv_of_eq_compose_left {H : D ⇒ C} (p : F = G) : inv_of_eq (ap (λx, H ∘f x) p) = H ∘fn inv_of_eq p := by induction p; exact !fn_id⁻¹ definition assoc_natural [constructor] (H : C ⇒ D) (G : B ⇒ C) (F : A ⇒ B) : H ∘f (G ∘f F) ⟹ (H ∘f G) ∘f F := change_natural_map (hom_of_eq !functor.assoc) (λa, id) (λa, !natural_map_hom_of_eq ⬝ ap hom_of_eq !ap010_assoc) definition assoc_natural_rev [constructor] (H : C ⇒ D) (G : B ⇒ C) (F : A ⇒ B) : (H ∘f G) ∘f F ⟹ H ∘f (G ∘f F) := change_natural_map (inv_of_eq !functor.assoc) (λa, id) (λa, !natural_map_inv_of_eq ⬝ ap (λx, hom_of_eq x⁻¹) !ap010_assoc) definition id_left_natural [constructor] (F : C ⇒ D) : functor.id ∘f F ⟹ F := change_natural_map (hom_of_eq !functor.id_left) (λc, id) (λc, by induction F; exact !natural_map_hom_of_eq ⬝ ap hom_of_eq !ap010_functor_mk_eq_constant) definition id_left_natural_rev [constructor] (F : C ⇒ D) : F ⟹ functor.id ∘f F := change_natural_map (inv_of_eq !functor.id_left) (λc, id) (λc, by induction F; exact !natural_map_inv_of_eq ⬝ ap (λx, hom_of_eq x⁻¹) !ap010_functor_mk_eq_constant) definition id_right_natural [constructor] (F : C ⇒ D) : F ∘f functor.id ⟹ F := change_natural_map (hom_of_eq !functor.id_right) (λc, id) (λc, by induction F; exact !natural_map_hom_of_eq ⬝ ap hom_of_eq !ap010_functor_mk_eq_constant) definition id_right_natural_rev [constructor] (F : C ⇒ D) : F ⟹ F ∘f functor.id := change_natural_map (inv_of_eq !functor.id_right) (λc, id) (λc, by induction F; exact !natural_map_inv_of_eq ⬝ ap (λx, hom_of_eq x⁻¹) !ap010_functor_mk_eq_constant) end section variables {C D E : Precategory} {G G' : D ⇒ E} {F F' : C ⇒ D} {J : D ⇒ D} definition is_iso_nf_compose [constructor] (G : D ⇒ E) (η : F ⟹ F') [H : is_iso η] : is_iso (G ∘fn η) := is_iso.mk (G ∘fn @inverse (C ⇒ D) _ _ _ η _) abstract !fn_n_distrib⁻¹ ⬝ ap (λx, G ∘fn x) (@left_inverse (C ⇒ D) _ _ _ η _) ⬝ !fn_id end abstract !fn_n_distrib⁻¹ ⬝ ap (λx, G ∘fn x) (@right_inverse (C ⇒ D) _ _ _ η _) ⬝ !fn_id end definition is_iso_fn_compose [constructor] (η : G ⟹ G') (F : C ⇒ D) [H : is_iso η] : is_iso (η ∘nf F) := is_iso.mk (@inverse (D ⇒ E) _ _ _ η _ ∘nf F) abstract !n_nf_distrib⁻¹ ⬝ ap (λx, x ∘nf F) (@left_inverse (D ⇒ E) _ _ _ η _) ⬝ !id_nf end abstract !n_nf_distrib⁻¹ ⬝ ap (λx, x ∘nf F) (@right_inverse (D ⇒ E) _ _ _ η _) ⬝ !id_nf end definition functor_iso_compose [constructor] (G : D ⇒ E) (η : F ≅ F') : G ∘f F ≅ G ∘f F' := iso.mk _ (is_iso_nf_compose G (to_hom η)) definition iso_functor_compose [constructor] (η : G ≅ G') (F : C ⇒ D) : G ∘f F ≅ G' ∘f F := iso.mk _ (is_iso_fn_compose (to_hom η) F) infixr ` ∘fi ` :62 := functor_iso_compose infixr ` ∘if ` :62 := iso_functor_compose /- TODO: also needs n_nf_distrib and id_nf for these compositions definition nidf_compose [constructor] (η : J ⟹ 1) (F : C ⇒ D) [H : is_iso η] : is_iso (η ∘n1f F) := is_iso.mk (@inverse (D ⇒ D) _ _ _ η _ ∘1nf F) abstract _ end _ definition idnf_compose [constructor] (η : 1 ⟹ J) (F : C ⇒ D) [H : is_iso η] : is_iso (η ∘1nf F) := is_iso.mk _ _ _ definition fnid_compose [constructor] (F : D ⇒ E) (η : J ⟹ 1) [H : is_iso η] : is_iso (F ∘fn1 η) := is_iso.mk _ _ _ definition fidn_compose [constructor] (F : D ⇒ E) (η : 1 ⟹ J) [H : is_iso η] : is_iso (F ∘f1n η) := is_iso.mk _ _ _ -/ end namespace functor variables {C : Precategory} {D : Category} {F G : D ^c C} definition eq_of_iso_ob (η : F ≅ G) (c : C) : F c = G c := by apply eq_of_iso; apply componentwise_iso; exact η local attribute functor.to_fun_hom [reducible] definition eq_of_iso (η : F ≅ G) : F = G := begin fapply functor_eq, {exact (eq_of_iso_ob η)}, {intro c c' f, esimp [eq_of_iso_ob, inv_of_eq, hom_of_eq, eq_of_iso], rewrite [*right_inv iso_of_eq], symmetry, apply @naturality_iso _ _ _ _ _ (iso.struct _) } end definition iso_of_eq_eq_of_iso (η : F ≅ G) : iso_of_eq (eq_of_iso η) = η := begin apply iso_eq, apply nat_trans_eq, intro c, rewrite natural_map_hom_of_eq, esimp [eq_of_iso], rewrite ap010_functor_eq, esimp [hom_of_eq,eq_of_iso_ob], rewrite (right_inv iso_of_eq), end definition eq_of_iso_iso_of_eq (p : F = G) : eq_of_iso (iso_of_eq p) = p := begin apply functor_eq2, intro c, esimp [eq_of_iso], rewrite ap010_functor_eq, esimp [eq_of_iso_ob], rewrite componentwise_iso_iso_of_eq, rewrite (left_inv iso_of_eq) end definition is_univalent (D : Category) (C : Precategory) : is_univalent (D ^c C) := λF G, adjointify _ eq_of_iso iso_of_eq_eq_of_iso eq_of_iso_iso_of_eq end functor definition category_functor [instance] [constructor] (D : Category) (C : Precategory) : category (D ^c C) := category.mk (D ^c C) (functor.is_univalent D C) definition Category_functor [constructor] (D : Category) (C : Precategory) : Category := category.Mk (D ^c C) !category_functor --this definition is only useful if the exponent is a category, -- and the elaborator has trouble with inserting the coercion definition Category_functor' [constructor] (D C : Category) : Category := Category_functor D C namespace ops infixr ` ^c2 `:35 := Category_functor end ops namespace functor variables {C : Precategory} {D : Category} {F G : D ^c C} definition eq_of_pointwise_iso (η : F ⟹ G) (iso : Π(a : C), is_iso (η a)) : F = G := eq_of_iso (natural_iso.mk η iso) definition iso_of_eq_eq_of_pointwise_iso (η : F ⟹ G) (iso : Π(c : C), is_iso (η c)) : iso_of_eq (eq_of_pointwise_iso η iso) = natural_iso.mk η iso := !iso_of_eq_eq_of_iso definition hom_of_eq_eq_of_pointwise_iso (η : F ⟹ G) (iso : Π(c : C), is_iso (η c)) : hom_of_eq (eq_of_pointwise_iso η iso) = η := !hom_of_eq_eq_of_iso definition inv_of_eq_eq_of_pointwise_iso (η : F ⟹ G) (iso : Π(c : C), is_iso (η c)) : inv_of_eq (eq_of_pointwise_iso η iso) = nat_trans_inverse η := !inv_of_eq_eq_of_iso end functor /- functors involving only the functor category (see ..functor.curry for some other functors involving also products) -/ variables {C D I : Precategory} definition constant2_functor [constructor] (F : I ⇒ D ^c C) (c : C) : I ⇒ D := functor.mk (λi, to_fun_ob (F i) c) (λi j f, natural_map (F f) c) abstract (λi, ap010 natural_map !respect_id c ⬝ proof idp qed) end abstract (λi j k g f, ap010 natural_map !respect_comp c) end definition constant2_functor_natural [constructor] (F : I ⇒ D ^c C) {c d : C} (f : c ⟶ d) : constant2_functor F c ⟹ constant2_functor F d := nat_trans.mk (λi, to_fun_hom (F i) f) (λi j k, (naturality (F k) f)⁻¹) definition functor_flip [constructor] (F : I ⇒ D ^c C) : C ⇒ D ^c I := functor.mk (constant2_functor F) @(constant2_functor_natural F) abstract begin intros, apply nat_trans_eq, intro i, esimp, apply respect_id end end abstract begin intros, apply nat_trans_eq, intro i, esimp, apply respect_comp end end definition eval_functor [constructor] (C D : Precategory) (d : D) : C ^c D ⇒ C := begin fapply functor.mk: esimp, { intro F, exact F d}, { intro G F η, exact η d}, { intro F, reflexivity}, { intro H G F η θ, reflexivity}, end definition precomposition_functor [constructor] {C D} (E) (F : C ⇒ D) : E ^c D ⇒ E ^c C := begin fapply functor.mk: esimp, { intro G, exact G ∘f F}, { intro G H η, exact η ∘nf F}, { intro G, reflexivity}, { intro G H I η θ, reflexivity}, end definition postcomposition_functor [constructor] {C D} (E) (F : C ⇒ D) : C ^c E ⇒ D ^c E := begin fapply functor.mk: esimp, { intro G, exact F ∘f G}, { intro G H η, exact F ∘fn η}, { intro G, apply fn_id}, { intro G H I η θ, apply fn_n_distrib}, end definition constant_diagram [constructor] (C D) : C ⇒ C ^c D := begin fapply functor.mk: esimp, { intro c, exact constant_functor D c}, { intro c d f, exact constant_nat_trans D f}, { intro c, fapply nat_trans_eq, reflexivity}, { intro c d e g f, fapply nat_trans_eq, reflexivity}, end definition opposite_functor_opposite_left [constructor] (C D : Precategory) : (C ^c D)ᵒᵖ ⇒ Cᵒᵖ ^c Dᵒᵖ := begin fapply functor.mk: esimp, { exact opposite_functor}, { intro F G, exact opposite_nat_trans}, { intro F, apply nat_trans_eq, reflexivity}, { intro u v w g f, apply nat_trans_eq, reflexivity} end definition opposite_functor_opposite_right [constructor] (C D : Precategory) : Cᵒᵖ ^c Dᵒᵖ ⇒ (C ^c D)ᵒᵖ := begin fapply functor.mk: esimp, { exact opposite_functor_rev}, { apply @opposite_rev_nat_trans}, { intro F, apply nat_trans_eq, intro d, reflexivity}, { intro F G H η θ, apply nat_trans_eq, intro d, reflexivity} end definition constant_diagram_opposite [constructor] (C D) : (constant_diagram C D)ᵒᵖᶠ = opposite_functor_opposite_right C D ∘f constant_diagram Cᵒᵖ Dᵒᵖ := begin fapply functor_eq, { reflexivity}, { intro c c' f, esimp at *, refine !nat_trans.id_right ⬝ !nat_trans.id_left ⬝ _, apply nat_trans_eq, intro d, reflexivity} end end functor