/- Copyright (c) 2015-16 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn The groupoid quotient. This is a 1-type which path spaces is the same as the morphisms a given groupoid. We define it as the 1-truncation of a two quotient. -/ import algebra.category.groupoid .two_quotient homotopy.connectedness algebra.group_theory open trunc_two_quotient eq bool unit relation category e_closure iso is_trunc trunc equiv is_equiv group namespace groupoid_quotient section parameter (G : Groupoid) inductive groupoid_quotient_R : G → G → Type := | Rmk : Π{a b : G} (f : a ⟶ b), groupoid_quotient_R a b open groupoid_quotient_R local abbreviation R := groupoid_quotient_R inductive groupoid_quotient_Q : Π⦃x y : G⦄, e_closure groupoid_quotient_R x y → e_closure groupoid_quotient_R x y → Type := | Qconcat : Π{a b c : G} (g : b ⟶ c) (f : a ⟶ b), groupoid_quotient_Q [Rmk (g ∘ f)] ([Rmk f] ⬝r [Rmk g]) open groupoid_quotient_Q local abbreviation Q := groupoid_quotient_Q definition groupoid_quotient := trunc_two_quotient 1 R Q local attribute groupoid_quotient [reducible] definition is_trunc_groupoid_quotient [instance] : is_trunc 1 groupoid_quotient := _ parameter {G} variables {a b c : G} definition elt (a : G) : groupoid_quotient := incl0 a definition pth (f : a ⟶ b) : elt a = elt b := incl1 (Rmk f) definition resp_comp (g : b ⟶ c) (f : a ⟶ b) : pth (g ∘ f) = pth f ⬝ pth g := incl2 (Qconcat g f) definition resp_id (a : G) : pth (ID a) = idp := begin apply cancel_right (pth (id)), refine _ ⬝ !idp_con⁻¹, refine !resp_comp⁻¹ ⬝ _, exact ap pth !id_id, end definition resp_inv (f : a ⟶ b) : pth (f⁻¹) = (pth f)⁻¹ := begin apply eq_inv_of_con_eq_idp', refine !resp_comp⁻¹ ⬝ _, refine ap pth !right_inverse ⬝ _, apply resp_id end protected definition rec {P : groupoid_quotient → Type} [Πx, is_trunc 1 (P x)] (Pe : Πg, P (elt g)) (Pp : Π⦃a b⦄ (f : a ⟶ b), Pe a =[pth f] Pe b) (Pcomp : Π⦃a b c⦄ (g : b ⟶ c) (f : a ⟶ b), change_path (resp_comp g f) (Pp (g ∘ f)) = Pp f ⬝o Pp g) (x : groupoid_quotient) : P x := begin induction x, { apply Pe}, { induction s with a b f, apply Pp}, { induction q with a b c g f, apply Pcomp} end protected definition rec_on {P : groupoid_quotient → Type} [Πx, is_trunc 1 (P x)] (x : groupoid_quotient) (Pe : Πg, P (elt g)) (Pp : Π⦃a b⦄ (f : a ⟶ b), Pe a =[pth f] Pe b) (Pcomp : Π⦃a b c⦄ (g : b ⟶ c) (f : a ⟶ b), change_path (resp_comp g f) (Pp (g ∘ f)) = Pp f ⬝o Pp g) : P x := rec Pe Pp Pcomp x protected definition set_rec {P : groupoid_quotient → Type} [Πx, is_set (P x)] (Pe : Πg, P (elt g)) (Pp : Π⦃a b⦄ (f : a ⟶ b), Pe a =[pth f] Pe b) (x : groupoid_quotient) : P x := rec Pe Pp !center x protected definition prop_rec {P : groupoid_quotient → Type} [Πx, is_prop (P x)] (Pe : Πg, P (elt g)) (x : groupoid_quotient) : P x := rec Pe !center !center x definition rec_pth {P : groupoid_quotient → Type} [Πx, is_trunc 1 (P x)] {Pe : Πg, P (elt g)} {Pp : Π⦃a b⦄ (f : a ⟶ b), Pe a =[pth f] Pe b} (Pcomp : Π⦃a b c⦄ (g : b ⟶ c) (f : a ⟶ b), change_path (resp_comp g f) (Pp (g ∘ f)) = Pp f ⬝o Pp g) {a b : G} (f : a ⟶ b) : apd (rec Pe Pp Pcomp) (pth f) = Pp f := proof !rec_incl1 qed protected definition elim {P : Type} [is_trunc 1 P] (Pe : G → P) (Pp : Π⦃a b⦄ (f : a ⟶ b), Pe a = Pe b) (Pcomp : Π⦃a b c⦄ (g : b ⟶ c) (f : a ⟶ b), Pp (g ∘ f) = Pp f ⬝ Pp g) (x : groupoid_quotient) : P := begin induction x, { exact Pe a}, { induction s with a b f, exact Pp f}, { induction q with a b c g f, exact Pcomp g f} end protected definition elim_on [reducible] {P : Type} [is_trunc 1 P] (x : groupoid_quotient) (Pe : G → P) (Pp : Π⦃a b⦄ (f : a ⟶ b), Pe a = Pe b) (Pcomp : Π⦃a b c⦄ (g : b ⟶ c) (f : a ⟶ b), Pp (g ∘ f) = Pp f ⬝ Pp g) : P := elim Pe Pp Pcomp x protected definition set_elim [reducible] {P : Type} [is_set P] (Pe : G → P) (Pp : Π⦃a b⦄ (f : a ⟶ b), Pe a = Pe b) (x : groupoid_quotient) : P := elim Pe Pp !center x protected definition prop_elim [reducible] {P : Type} [is_prop P] (Pe : G → P) (x : groupoid_quotient) : P := elim Pe !center !center x definition elim_pth {P : Type} [is_trunc 1 P] {Pe : G → P} {Pp : Π⦃a b⦄ (f : a ⟶ b), Pe a = Pe b} (Pcomp : Π⦃a b c⦄ (g : b ⟶ c) (f : a ⟶ b), Pp (g ∘ f) = Pp f ⬝ Pp g) {a b : G} (f : a ⟶ b) : ap (elim Pe Pp Pcomp) (pth f) = Pp f := !elim_incl1 -- The following rule is also true because P is a 1-type, and can be proven by `!is_set.elims` -- The following is the canonical proofs which holds for any truncated two-quotient. theorem elim_resp_comp {P : Type} [is_trunc 1 P] {Pe : G → P} {Pp : Π⦃a b⦄ (f : a ⟶ b), Pe a = Pe b} (Pcomp : Π⦃a b c⦄ (g : b ⟶ c) (f : a ⟶ b), Pp (g ∘ f) = Pp f ⬝ Pp g) {a b c : G} (g : b ⟶ c) (f : a ⟶ b) : square (ap02 (elim Pe Pp Pcomp) (resp_comp g f)) (Pcomp g f) (elim_pth Pcomp (g ∘ f)) (!ap_con ⬝ (elim_pth Pcomp f ◾ elim_pth Pcomp g)) := proof !elim_incl2 qed protected definition elim_set.{u} (Pe : G → Set.{u}) (Pp : Π⦃a b⦄ (f : a ⟶ b), Pe a ≃ Pe b) (Pcomp : Π⦃a b c⦄ (g : b ⟶ c) (f : a ⟶ b) (x : Pe a), Pp (g ∘ f) x = Pp g (Pp f x)) (x : groupoid_quotient) : Set.{u} := elim Pe (λa b f, tua (Pp f)) (λa b c g f, ap tua (equiv_eq (Pcomp g f)) ⬝ !tua_trans) x theorem elim_set_pth {Pe : G → Set} {Pp : Π⦃a b⦄ (f : a ⟶ b), Pe a ≃ Pe b} (Pcomp : Π⦃a b c⦄ (g : b ⟶ c) (f : a ⟶ b) (x : Pe a), Pp (g ∘ f) x = Pp g (Pp f x)) {a b : G} (f : a ⟶ b) : transport (elim_set Pe Pp Pcomp) (pth f) = Pp f := by rewrite [tr_eq_cast_ap_fn, ↑elim_set, ▸*, ap_compose' trunctype.carrier, elim_pth]; apply tcast_tua_fn end end groupoid_quotient attribute groupoid_quotient.elt [constructor] attribute groupoid_quotient.rec groupoid_quotient.elim [unfold 7] [recursor 7] attribute groupoid_quotient.rec_on groupoid_quotient.elim_on [unfold 4] attribute groupoid_quotient.set_rec groupoid_quotient.set_elim [unfold 6] attribute groupoid_quotient.prop_rec groupoid_quotient.prop_elim groupoid_quotient.elim_set [unfold 5] open sigma pi is_conn function namespace groupoid_quotient section universe variables u v variables {G : Groupoid.{u v}} (a : G) {b c : G} include a protected definition code [unfold 3] (x : groupoid_quotient G) : Set.{v} := begin refine groupoid_quotient.elim_set _ _ _ x, { intro b, exact homset a b}, { intro b c g, exact equiv_postcompose g}, { intro b c d h g f, esimp at *, apply assoc'} end omit a local abbreviation code [unfold 3] := @groupoid_quotient.code G a variable {a} protected definition encode [unfold 4] (x : groupoid_quotient G) (p : elt a = x) : code a x := transport (code a) p (ID a) protected definition decode [unfold 3] (x : groupoid_quotient G) (z : code a x) : elt a = x := begin induction x using groupoid_quotient.set_rec with b b c g, { esimp, exact pth z}, { apply arrow_pathover_left, esimp, intro f, apply eq_pathover_constant_left_id_right, apply square_of_eq, refine !resp_comp⁻¹ ⬝ _ ⬝ !idp_con⁻¹, rewrite elim_set_pth} end local abbreviation encode [unfold_full] := @groupoid_quotient.encode G a local abbreviation decode [unfold_full] := @groupoid_quotient.decode G a protected definition decode_encode (x : groupoid_quotient G) (p : elt a = x) : decode x (encode x p) = p := begin induction p, esimp, apply resp_id end protected definition encode_decode (x : groupoid_quotient G) (z : code a x) : encode x (decode x z) = z := begin induction x using groupoid_quotient.prop_rec with b, esimp, refine ap10 !elim_set_pth.{u v v} (ID a) ⬝ _, esimp, apply id_right end definition decode_comp (z : code a (elt b)) (z' : code b (elt c)) : decode (elt c) (z' ∘ z) = decode (elt b) z ⬝ decode (elt c) z' := !resp_comp variables (a b) definition elt_eq_elt_equiv [constructor] : (elt a = elt b) ≃ (a ⟶ b) := equiv.MK (encode (elt b)) (decode (elt b)) (groupoid_quotient.encode_decode (elt b)) (groupoid_quotient.decode_encode (elt b)) variables {a b} definition encode_con (p : elt a = elt b) (q : elt b = elt c) : encode (elt c) (p ⬝ q) = encode (elt c) q ∘ encode (elt b) p := begin apply eq_of_fn_eq_fn (elt_eq_elt_equiv a c)⁻¹ᵉ, refine !right_inv ⬝ _ ⬝ !decode_comp⁻¹, apply concat2, do 2 exact (to_left_inv !elt_eq_elt_equiv _)⁻¹ end variable (G) definition is_conn_groupoid_quotient [H : is_conn 0 G] : is_conn 0 (groupoid_quotient G) := begin have g : trunc 0 G, from !center, induction g with g, have p : Πh, ∥ g = h ∥, begin intro h, refine !tr_eq_tr_equiv _, apply is_prop.elim end, fapply is_contr.mk, { apply trunc_functor 0 elt (tr g)}, { intro x, induction x with x, induction x using groupoid_quotient.prop_rec with b, esimp, induction p b with q, exact ap (tr ∘ elt) q} end end end groupoid_quotient