/- Copyright (c) 2014-2016 Jakob von Raumer. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob von Raumer, Floris van Doorn Ported from Coq HoTT The basic definitions are in init.pointed -/ import .equiv .nat.basic open is_trunc eq prod sigma nat equiv option is_equiv bool unit algebra sigma.ops sum namespace pointed variables {A B : Type} definition pointed_loop [instance] [constructor] (a : A) : pointed (a = a) := pointed.mk idp definition pointed_fun_closed [constructor] (f : A → B) [H : pointed A] : pointed B := pointed.mk (f pt) definition ploop_space [reducible] [constructor] (A : Type*) : Type* := pointed.mk' (point A = point A) definition iterated_ploop_space [reducible] : ℕ → Type* → Type* | iterated_ploop_space 0 X := X | iterated_ploop_space (n+1) X := ploop_space (iterated_ploop_space n X) notation `Ω` := ploop_space notation `Ω[`:95 n:0 `] `:0 A:95 := iterated_ploop_space n A definition is_trunc_loop [instance] [priority 1100] (A : Type*) (n : ℕ₋₂) [H : is_trunc (n.+1) A] : is_trunc n (Ω A) := !is_trunc_eq definition iterated_ploop_space_zero [unfold_full] (A : Type*) : Ω[0] A = A := rfl definition iterated_ploop_space_succ [unfold_full] (k : ℕ) (A : Type*) : Ω[succ k] A = Ω Ω[k] A := rfl definition rfln [constructor] [reducible] {n : ℕ} {A : Type*} : Ω[n] A := pt definition refln [constructor] [reducible] (n : ℕ) (A : Type*) : Ω[n] A := pt definition refln_eq_refl [unfold_full] (A : Type*) (n : ℕ) : rfln = rfl :> Ω[succ n] A := rfl definition iterated_loop_space [unfold 3] (A : Type) [H : pointed A] (n : ℕ) : Type := Ω[n] (pointed.mk' A) definition loop_mul {k : ℕ} {A : Type*} (mul : A → A → A) : Ω[k] A → Ω[k] A → Ω[k] A := begin cases k with k, exact mul, exact concat end definition pType_eq {A B : Type*} (f : A ≃ B) (p : f pt = pt) : A = B := begin cases A with A a, cases B with B b, esimp at *, fapply apd011 @pType.mk, { apply ua f}, { rewrite [cast_ua,p]}, end definition pType_eq_elim {A B : Type*} (p : A = B :> Type*) : Σ(p : carrier A = carrier B :> Type), Point A =[p] Point B := by induction p; exact ⟨idp, idpo⟩ protected definition pType.sigma_char.{u} : pType.{u} ≃ Σ(X : Type.{u}), X := begin fapply equiv.MK, { intro x, induction x with X x, exact ⟨X, x⟩}, { intro x, induction x with X x, exact pointed.MK X x}, { intro x, induction x with X x, reflexivity}, { intro x, induction x with X x, reflexivity}, end definition add_point [constructor] (A : Type) : Type* := pointed.Mk (none : option A) postfix `₊`:(max+1) := add_point -- the inclusion A → A₊ is called "some", the extra point "pt" or "none" ("@none A") end pointed namespace pointed /- truncated pointed types -/ definition ptrunctype_eq {n : ℕ₋₂} {A B : n-Type*} (p : A = B :> Type) (q : Point A =[p] Point B) : A = B := begin induction A with A HA a, induction B with B HB b, esimp at *, induction q, esimp, refine ap010 (ptrunctype.mk A) _ a, exact !is_prop.elim end definition ptrunctype_eq_of_pType_eq {n : ℕ₋₂} {A B : n-Type*} (p : A = B :> Type*) : A = B := begin cases pType_eq_elim p with q r, exact ptrunctype_eq q r end definition is_trunc_ptrunctype [instance] {n : ℕ₋₂} (A : n-Type*) : is_trunc n A := trunctype.struct A /- properties of iterated loop space -/ variable (A : Type*) definition loop_space_succ_eq_in (n : ℕ) : Ω[succ n] A = Ω[n] (Ω A) := begin induction n with n IH, { reflexivity}, { exact ap ploop_space IH} end definition loop_space_add (n m : ℕ) : Ω[n] (Ω[m] A) = Ω[m+n] (A) := begin induction n with n IH, { reflexivity}, { exact ap ploop_space IH} end definition loop_space_succ_eq_out (n : ℕ) : Ω[succ n] A = Ω(Ω[n] A) := idp variable {A} /- the equality [loop_space_succ_eq_in] preserves concatenation -/ theorem loop_space_succ_eq_in_concat {n : ℕ} (p q : Ω[succ (succ n)] A) : transport carrier (ap ploop_space (loop_space_succ_eq_in A n)) (p ⬝ q) = transport carrier (ap ploop_space (loop_space_succ_eq_in A n)) p ⬝ transport carrier (ap ploop_space (loop_space_succ_eq_in A n)) q := begin rewrite [-+tr_compose, ↑function.compose], rewrite [+@transport_eq_FlFr_D _ _ _ _ Point Point, +con.assoc], apply whisker_left, rewrite [-+con.assoc], apply whisker_right, rewrite [con_inv_cancel_right, ▸*, -ap_con] end definition loop_space_loop_irrel (p : point A = point A) : Ω(pointed.Mk p) = Ω[2] A := begin intros, fapply pType_eq, { esimp, transitivity _, apply eq_equiv_fn_eq_of_equiv (equiv_eq_closed_right _ p⁻¹), esimp, apply eq_equiv_eq_closed, apply con.right_inv, apply con.right_inv}, { esimp, apply con.left_inv} end definition iterated_loop_space_loop_irrel (n : ℕ) (p : point A = point A) : Ω[succ n](pointed.Mk p) = Ω[succ (succ n)] A :> pType := calc Ω[succ n](pointed.Mk p) = Ω[n](Ω (pointed.Mk p)) : loop_space_succ_eq_in ... = Ω[n] (Ω[2] A) : loop_space_loop_irrel ... = Ω[2+n] A : loop_space_add ... = Ω[n+2] A : by rewrite [algebra.add.comm] end pointed open pointed namespace pointed variables {A B C D : Type*} {f g h : A →* B} /- categorical properties of pointed maps -/ definition pmap_of_map [constructor] {A B : Type} (f : A → B) (a : A) : pointed.MK A a →* pointed.MK B (f a) := pmap.mk f idp definition pid [constructor] [refl] (A : Type*) : A →* A := pmap.mk id idp definition pcompose [constructor] [trans] (g : B →* C) (f : A →* B) : A →* C := pmap.mk (λa, g (f a)) (ap g (respect_pt f) ⬝ respect_pt g) infixr ` ∘* `:60 := pcompose definition passoc (h : C →* D) (g : B →* C) (f : A →* B) : (h ∘* g) ∘* f ~* h ∘* (g ∘* f) := begin fconstructor, intro a, reflexivity, cases A, cases B, cases C, cases D, cases f with f pf, cases g with g pg, cases h with h ph, esimp at *, induction pf, induction pg, induction ph, reflexivity end definition pid_comp [constructor] (f : A →* B) : pid B ∘* f ~* f := begin fconstructor, { intro a, reflexivity}, { reflexivity} end definition comp_pid [constructor] (f : A →* B) : f ∘* pid A ~* f := begin fconstructor, { intro a, reflexivity}, { reflexivity} end /- equivalences and equalities -/ definition pmap_eq (r : Πa, f a = g a) (s : respect_pt f = (r pt) ⬝ respect_pt g) : f = g := begin cases f with f p, cases g with g q, esimp at *, fapply apo011 pmap.mk, { exact eq_of_homotopy r}, { apply concato_eq, apply pathover_eq_Fl, apply inv_con_eq_of_eq_con, rewrite [ap_eq_ap10,↑ap10,apd10_eq_of_homotopy,s]} end definition pmap_equiv_left (A : Type) (B : Type*) : A₊ →* B ≃ (A → B) := begin fapply equiv.MK, { intro f a, cases f with f p, exact f (some a)}, { intro f, fconstructor, intro a, cases a, exact pt, exact f a, reflexivity}, { intro f, reflexivity}, { intro f, cases f with f p, esimp, fapply pmap_eq, { intro a, cases a; all_goals (esimp at *), exact p⁻¹}, { esimp, exact !con.left_inv⁻¹}}, end definition pmap_equiv_right (A : Type*) (B : Type) : (Σ(b : B), A →* (pointed.Mk b)) ≃ (A → B) := begin fapply equiv.MK, { intro u a, exact pmap.to_fun u.2 a}, { intro f, refine ⟨f pt, _⟩, fapply pmap.mk, intro a, esimp, exact f a, reflexivity}, { intro f, reflexivity}, { intro u, cases u with b f, cases f with f p, esimp at *, induction p, reflexivity} end definition pmap_bool_equiv (B : Type*) : (pbool →* B) ≃ B := begin fapply equiv.MK, { intro f, cases f with f p, exact f tt}, { intro b, fconstructor, intro u, cases u, exact pt, exact b, reflexivity}, { intro b, reflexivity}, { intro f, cases f with f p, esimp, fapply pmap_eq, { intro a, cases a; all_goals (esimp at *), exact p⁻¹}, { esimp, exact !con.left_inv⁻¹}}, end -- The constant pointed map between any two types definition pconst [constructor] (A B : Type*) : A →* B := pmap.mk (λ a, Point B) idp -- the pointed type of pointed maps definition ppmap [constructor] (A B : Type*) : Type* := pType.mk (A →* B) (pconst A B) /- instances of pointed maps -/ definition pcast [constructor] {A B : Type*} (p : A = B) : A →* B := pmap.mk (cast (ap pType.carrier p)) (by induction p; reflexivity) definition pinverse [constructor] {X : Type*} : Ω X →* Ω X := pmap.mk eq.inverse idp definition ap1 [constructor] (f : A →* B) : Ω A →* Ω B := begin fconstructor, { intro p, exact !respect_pt⁻¹ ⬝ ap f p ⬝ !respect_pt}, { esimp, apply con.left_inv} end definition apn (n : ℕ) (f : A →* B) : Ω[n] A →* Ω[n] B := begin induction n with n IH, { exact f}, { esimp [iterated_ploop_space], exact ap1 IH} end prefix `Ω→`:(max+5) := ap1 notation `Ω→[`:95 n:0 `] `:0 f:95 := apn n f /- categorical properties of pointed homotopies -/ protected definition phomotopy.refl [constructor] [refl] (f : A →* B) : f ~* f := begin fconstructor, { intro a, exact idp}, { apply idp_con} end protected definition phomotopy.rfl [constructor] {f : A →* B} : f ~* f := phomotopy.refl f protected definition phomotopy.trans [constructor] [trans] (p : f ~* g) (q : g ~* h) : f ~* h := phomotopy.mk (λa, p a ⬝ q a) abstract begin induction f, induction g, induction p with p p', induction q with q q', esimp at *, induction p', induction q', esimp, apply con.assoc end end protected definition phomotopy.symm [constructor] [symm] (p : f ~* g) : g ~* f := phomotopy.mk (λa, (p a)⁻¹) abstract begin induction f, induction p with p p', esimp at *, induction p', esimp, apply inv_con_cancel_left end end infix ` ⬝* `:75 := phomotopy.trans postfix `⁻¹*`:(max+1) := phomotopy.symm /- properties about the given pointed maps -/ definition is_equiv_ap1 (f : A →* B) [is_equiv f] : is_equiv (ap1 f) := begin induction B with B b, induction f with f pf, esimp at *, cases pf, esimp, apply is_equiv.homotopy_closed (ap f), intro p, exact !idp_con⁻¹ end definition is_equiv_apn (n : ℕ) (f : A →* B) [H : is_equiv f] : is_equiv (apn n f) := begin induction n with n IH, { exact H}, { exact is_equiv_ap1 (apn n f)} end definition is_equiv_pcast [instance] {A B : Type*} (p : A = B) : is_equiv (pcast p) := !is_equiv_cast definition ap1_id [constructor] {A : Type*} : ap1 (pid A) ~* pid (Ω A) := begin fapply phomotopy.mk, { intro p, esimp, refine !idp_con ⬝ !ap_id}, { reflexivity} end definition ap1_pinverse {A : Type*} : ap1 (@pinverse A) ~* @pinverse (Ω A) := begin fapply phomotopy.mk, { intro p, esimp, refine !idp_con ⬝ _, exact !inv_eq_inv2⁻¹ }, { reflexivity} end definition ap1_compose (g : B →* C) (f : A →* B) : ap1 (g ∘* f) ~* ap1 g ∘* ap1 f := begin induction B, induction C, induction g with g pg, induction f with f pf, esimp at *, induction pg, induction pf, fconstructor, { intro p, esimp, apply whisker_left, exact ap_compose g f p ⬝ ap (ap g) !idp_con⁻¹}, { reflexivity} end definition ap1_compose_pinverse (f : A →* B) : ap1 f ∘* pinverse ~* pinverse ∘* ap1 f := begin fconstructor, { intro p, esimp, refine !con.assoc ⬝ _ ⬝ !con_inv⁻¹, apply whisker_left, refine whisker_right !ap_inv _ ⬝ _ ⬝ !con_inv⁻¹, apply whisker_left, exact !inv_inv⁻¹}, { induction B with B b, induction f with f pf, esimp at *, induction pf, reflexivity}, end theorem ap1_con (f : A →* B) (p q : Ω A) : ap1 f (p ⬝ q) = ap1 f p ⬝ ap1 f q := begin rewrite [▸*,ap_con, +con.assoc, con_inv_cancel_left], repeat apply whisker_left end theorem ap1_inv (f : A →* B) (p : Ω A) : ap1 f p⁻¹ = (ap1 f p)⁻¹ := begin rewrite [▸*,ap_inv, +con_inv, inv_inv, +con.assoc], repeat apply whisker_left end definition pcast_ap_loop_space {A B : Type*} (p : A = B) : pcast (ap ploop_space p) ~* Ω→ (pcast p) := begin induction p, exact !ap1_id⁻¹* end definition pinverse_con [constructor] {X : Type*} (p q : Ω X) : pinverse (p ⬝ q) = pinverse q ⬝ pinverse p := !con_inv definition pinverse_inv [constructor] {X : Type*} (p : Ω X) : pinverse p⁻¹ = (pinverse p)⁻¹ := idp definition pcast_idp [constructor] {A : Type*} : pcast (idpath A) ~* pid A := by reflexivity definition apn_zero [unfold_full] (f : A →* B) : Ω→[0] f = f := idp definition apn_succ [unfold_full] (n : ℕ) (f : A →* B) : Ω→[n + 1] f = Ω→ (Ω→[n] f) := idp /- more on pointed homotopies -/ definition phomotopy_of_eq [constructor] {A B : Type*} {f g : A →* B} (p : f = g) : f ~* g := phomotopy.mk (ap010 pmap.to_fun p) begin induction p, apply idp_con end definition pconcat_eq [constructor] {A B : Type*} {f g h : A →* B} (p : f ~* g) (q : g = h) : f ~* h := p ⬝* phomotopy_of_eq q definition eq_pconcat [constructor] {A B : Type*} {f g h : A →* B} (p : f = g) (q : g ~* h) : f ~* h := phomotopy_of_eq p ⬝* q infix ` ⬝*p `:75 := pconcat_eq infix ` ⬝p* `:75 := eq_pconcat definition pwhisker_left [constructor] (h : B →* C) (p : f ~* g) : h ∘* f ~* h ∘* g := phomotopy.mk (λa, ap h (p a)) abstract begin induction A, induction B, induction C, induction f with f pf, induction g with g pg, induction h with h ph, induction p with p p', esimp at *, induction ph, induction pg, induction p', reflexivity end end definition pwhisker_right [constructor] (h : C →* A) (p : f ~* g) : f ∘* h ~* g ∘* h := phomotopy.mk (λa, p (h a)) abstract begin induction A, induction B, induction C, induction f with f pf, induction g with g pg, induction h with h ph, induction p with p p', esimp at *, induction ph, induction pg, induction p', esimp, exact !idp_con⁻¹ end end definition pconcat2 [constructor] {A B C : Type*} {h i : B →* C} {f g : A →* B} (q : h ~* i) (p : f ~* g) : h ∘* f ~* i ∘* g := pwhisker_left _ p ⬝* pwhisker_right _ q definition eq_of_phomotopy (p : f ~* g) : f = g := begin fapply pmap_eq, { intro a, exact p a}, { exact !to_homotopy_pt⁻¹} end /- In general we need function extensionality for pap, but for particular F we can do it without function extensionality. -/ definition pap (F : (A →* B) → (C →* D)) {f g : A →* B} (p : f ~* g) : F f ~* F g := phomotopy.mk (ap010 F (eq_of_phomotopy p)) begin cases eq_of_phomotopy p, apply idp_con end definition ap1_phomotopy {f g : A →* B} (p : f ~* g) : ap1 f ~* ap1 g := begin induction p with p q, induction f with f pf, induction g with g pg, induction B with B b, esimp at *, induction q, induction pg, fapply phomotopy.mk, { intro l, esimp, refine _ ⬝ !idp_con⁻¹, refine !con.assoc ⬝ _, apply inv_con_eq_of_eq_con, apply ap_con_eq_con_ap}, { unfold [ap_con_eq_con_ap], generalize p (Point A), generalize g (Point A), intro b q, induction q, reflexivity} end definition apn_phomotopy {f g : A →* B} (n : ℕ) (p : f ~* g) : apn n f ~* apn n g := begin induction n with n IH, { exact p}, { exact ap1_phomotopy IH} end definition apn_compose (n : ℕ) (g : B →* C) (f : A →* B) : apn n (g ∘* f) ~* apn n g ∘* apn n f := begin induction n with n IH, { reflexivity}, { refine ap1_phomotopy IH ⬝* _, apply ap1_compose} end definition apn_pid [constructor] {A : Type*} (n : ℕ) : apn n (pid A) ~* pid (Ω[n] A) := begin induction n with n IH, { reflexivity}, { exact ap1_phomotopy IH ⬝* ap1_id} end theorem apn_con (n : ℕ) (f : A →* B) (p q : Ω[n+1] A) : apn (n+1) f (p ⬝ q) = apn (n+1) f p ⬝ apn (n+1) f q := by rewrite [+apn_succ, ap1_con] theorem apn_inv (n : ℕ) (f : A →* B) (p : Ω[n+1] A) : apn (n+1) f p⁻¹ = (apn (n+1) f p)⁻¹ := by rewrite [+apn_succ, ap1_inv] definition pinverse_pinverse (A : Type*) : pinverse ∘* pinverse ~* pid (Ω A) := begin fapply phomotopy.mk, { apply inv_inv}, { reflexivity} end definition pcast_loop_space [constructor] {A B : Type*} (p : A = B) : pcast (ap Ω p) ~* ap1 (pcast p) := begin fapply phomotopy.mk, { intro a, induction p, esimp, exact (!idp_con ⬝ !ap_id)⁻¹}, { induction p, reflexivity} end definition apn_succ_phomotopy_in (n : ℕ) (f : A →* B) : pcast (loop_space_succ_eq_in B n) ∘* Ω→[n + 1] f ~* Ω→[n] (Ω→ f) ∘* pcast (loop_space_succ_eq_in A n) := begin induction n with n IH, { reflexivity}, { refine pwhisker_right _ (pcast_loop_space (loop_space_succ_eq_in B n)) ⬝* _, refine _ ⬝* pwhisker_left _ (pcast_loop_space (loop_space_succ_eq_in A n))⁻¹*, refine (ap1_compose _ (Ω→[n + 1] f))⁻¹* ⬝* _ ⬝* ap1_compose (Ω→[n] (Ω→ f)) _, exact ap1_phomotopy IH} end definition ap1_pmap_of_map [constructor] {A B : Type} (f : A → B) (a : A) : ap1 (pmap_of_map f a) ~* pmap_of_map (ap f) (idpath a) := begin fapply phomotopy.mk, { intro a, esimp, apply idp_con}, { reflexivity} end definition pmap_of_eq_pt [constructor] {A : Type} {a a' : A} (p : a = a') : pointed.MK A a →* pointed.MK A a' := pmap.mk id p /- pointed equivalences -/ definition pequiv_of_pmap [constructor] (f : A →* B) (H : is_equiv f) : A ≃* B := pequiv.mk f _ (respect_pt f) definition pequiv_of_equiv [constructor] (f : A ≃ B) (H : f pt = pt) : A ≃* B := pequiv.mk f _ H protected definition pequiv.MK [constructor] (f : A →* B) (g : B → A) (gf : Πa, g (f a) = a) (fg : Πb, f (g b) = b) : A ≃* B := pequiv.mk f (adjointify f g fg gf) (respect_pt f) definition equiv_of_pequiv [constructor] (f : A ≃* B) : A ≃ B := equiv.mk f _ definition to_pinv [constructor] (f : A ≃* B) : B →* A := pmap.mk f⁻¹ ((ap f⁻¹ (respect_pt f))⁻¹ ⬝ left_inv f pt) definition to_pmap_pequiv_of_pmap {A B : Type*} (f : A →* B) (H : is_equiv f) : pequiv.to_pmap (pequiv_of_pmap f H) = f := by cases f; reflexivity /- A version of pequiv.MK with stronger conditions. The advantage of defining a pointed equivalence with this definition is that there is a pointed homotopy between the inverse of the resulting equivalence and the given pointed map g. This is not the case when using `pequiv.MK` (if g is a pointed map), that will only give an ordinary homotopy. -/ protected definition pequiv.MK2 [constructor] (f : A →* B) (g : B →* A) (gf : g ∘* f ~* !pid) (fg : f ∘* g ~* !pid) : A ≃* B := pequiv.MK f g gf fg definition to_pmap_pequiv_MK2 [constructor] (f : A →* B) (g : B →* A) (gf : g ∘* f ~* !pid) (fg : f ∘* g ~* !pid) : pequiv.MK2 f g gf fg ~* f := phomotopy.mk (λb, idp) !idp_con definition to_pinv_pequiv_MK2 [constructor] (f : A →* B) (g : B →* A) (gf : g ∘* f ~* !pid) (fg : f ∘* g ~* !pid) : to_pinv (pequiv.MK2 f g gf fg) ~* g := phomotopy.mk (λb, idp) abstract [irreducible] begin esimp, unfold [adjointify_left_inv'], note H := to_homotopy_pt gf, note H2 := to_homotopy_pt fg, note H3 := eq_top_of_square (natural_square_tr (to_homotopy fg) (respect_pt f)), rewrite [▸* at *, H, H3, H2, ap_id, - +con.assoc, ap_compose' f g, con_inv, - ap_inv, - +ap_con g], apply whisker_right, apply ap02 g, rewrite [ap_con, - + con.assoc, +ap_inv, +inv_con_cancel_right, con.left_inv], end end definition pua {A B : Type*} (f : A ≃* B) : A = B := pType_eq (equiv_of_pequiv f) !respect_pt protected definition pequiv.refl [refl] [constructor] (A : Type*) : A ≃* A := pequiv_of_pmap !pid !is_equiv_id protected definition pequiv.rfl [constructor] : A ≃* A := pequiv.refl A protected definition pequiv.symm [symm] (f : A ≃* B) : B ≃* A := pequiv_of_pmap (to_pinv f) !is_equiv_inv protected definition pequiv.trans [trans] (f : A ≃* B) (g : B ≃* C) : A ≃* C := pequiv_of_pmap (g ∘* f) !is_equiv_compose postfix `⁻¹ᵉ*`:(max + 1) := pequiv.symm infix ` ⬝e* `:75 := pequiv.trans definition to_pmap_pequiv_trans {A B C : Type*} (f : A ≃* B) (g : B ≃* C) : pequiv.to_pmap (f ⬝e* g) = g ∘* f := !to_pmap_pequiv_of_pmap definition pequiv_change_fun [constructor] (f : A ≃* B) (f' : A →* B) (Heq : f ~ f') : A ≃* B := pequiv_of_pmap f' (is_equiv.homotopy_closed f Heq) definition pequiv_change_inv [constructor] (f : A ≃* B) (f' : B →* A) (Heq : to_pinv f ~ f') : A ≃* B := pequiv.MK f f' (to_left_inv (equiv_change_inv f Heq)) (to_right_inv (equiv_change_inv f Heq)) definition pequiv_rect' (f : A ≃* B) (P : A → B → Type) (g : Πb, P (f⁻¹ b) b) (a : A) : P a (f a) := left_inv f a ▸ g (f a) definition pequiv_of_eq [constructor] {A B : Type*} (p : A = B) : A ≃* B := pequiv_of_pmap (pcast p) !is_equiv_tr definition peconcat_eq {A B C : Type*} (p : A ≃* B) (q : B = C) : A ≃* C := p ⬝e* pequiv_of_eq q definition eq_peconcat {A B C : Type*} (p : A = B) (q : B ≃* C) : A ≃* C := pequiv_of_eq p ⬝e* q definition eq_of_pequiv {A B : Type*} (p : A ≃* B) : A = B := pType_eq (equiv_of_pequiv p) !respect_pt definition peap {A B : Type*} (F : Type* → Type*) (p : A ≃* B) : F A ≃* F B := pequiv_of_pmap (pcast (ap F (eq_of_pequiv p))) begin cases eq_of_pequiv p, apply is_equiv_id end definition pequiv_eq {p q : A ≃* B} (H : p = q :> (A →* B)) : p = q := begin cases p with f Hf, cases q with g Hg, esimp at *, exact apd011 pequiv_of_pmap H !is_prop.elim end infix ` ⬝e*p `:75 := peconcat_eq infix ` ⬝pe* `:75 := eq_peconcat local attribute pequiv.symm [constructor] definition pleft_inv (f : A ≃* B) : f⁻¹ᵉ* ∘* f ~* pid A := phomotopy.mk (left_inv f) abstract begin esimp, symmetry, apply con_inv_cancel_left end end definition pright_inv (f : A ≃* B) : f ∘* f⁻¹ᵉ* ~* pid B := phomotopy.mk (right_inv f) abstract begin induction f with f H p, esimp, rewrite [ap_con, +ap_inv, -adj f, -ap_compose], note q := natural_square (right_inv f) p, rewrite [ap_id at q], apply eq_bot_of_square, exact transpose q end end definition pcancel_left (f : B ≃* C) {g h : A →* B} (p : f ∘* g ~* f ∘* h) : g ~* h := begin refine _⁻¹* ⬝* pwhisker_left f⁻¹ᵉ* p ⬝* _: refine !passoc⁻¹* ⬝* _: refine pwhisker_right _ (pleft_inv f) ⬝* _: apply pid_comp end definition pcancel_right (f : A ≃* B) {g h : B →* C} (p : g ∘* f ~* h ∘* f) : g ~* h := begin refine _⁻¹* ⬝* pwhisker_right f⁻¹ᵉ* p ⬝* _: refine !passoc ⬝* _: refine pwhisker_left _ (pright_inv f) ⬝* _: apply comp_pid end definition phomotopy_pinv_right_of_phomotopy {f : A ≃* B} {g : B →* C} {h : A →* C} (p : g ∘* f ~* h) : g ~* h ∘* f⁻¹ᵉ* := begin refine _ ⬝* pwhisker_right _ p, symmetry, refine !passoc ⬝* _, refine pwhisker_left _ (pright_inv f) ⬝* _, apply comp_pid end definition phomotopy_of_pinv_right_phomotopy {f : B ≃* A} {g : B →* C} {h : A →* C} (p : g ∘* f⁻¹ᵉ* ~* h) : g ~* h ∘* f := begin refine _ ⬝* pwhisker_right _ p, symmetry, refine !passoc ⬝* _, refine pwhisker_left _ (pleft_inv f) ⬝* _, apply comp_pid end definition pinv_right_phomotopy_of_phomotopy {f : A ≃* B} {g : B →* C} {h : A →* C} (p : h ~* g ∘* f) : h ∘* f⁻¹ᵉ* ~* g := (phomotopy_pinv_right_of_phomotopy p⁻¹*)⁻¹* definition phomotopy_of_phomotopy_pinv_right {f : B ≃* A} {g : B →* C} {h : A →* C} (p : h ~* g ∘* f⁻¹ᵉ*) : h ∘* f ~* g := (phomotopy_of_pinv_right_phomotopy p⁻¹*)⁻¹* definition phomotopy_pinv_left_of_phomotopy {f : B ≃* C} {g : A →* B} {h : A →* C} (p : f ∘* g ~* h) : g ~* f⁻¹ᵉ* ∘* h := begin refine _ ⬝* pwhisker_left _ p, symmetry, refine !passoc⁻¹* ⬝* _, refine pwhisker_right _ (pleft_inv f) ⬝* _, apply pid_comp end definition phomotopy_of_pinv_left_phomotopy {f : C ≃* B} {g : A →* B} {h : A →* C} (p : f⁻¹ᵉ* ∘* g ~* h) : g ~* f ∘* h := begin refine _ ⬝* pwhisker_left _ p, symmetry, refine !passoc⁻¹* ⬝* _, refine pwhisker_right _ (pright_inv f) ⬝* _, apply pid_comp end definition pinv_left_phomotopy_of_phomotopy {f : B ≃* C} {g : A →* B} {h : A →* C} (p : h ~* f ∘* g) : f⁻¹ᵉ* ∘* h ~* g := (phomotopy_pinv_left_of_phomotopy p⁻¹*)⁻¹* definition phomotopy_of_phomotopy_pinv_left {f : C ≃* B} {g : A →* B} {h : A →* C} (p : h ~* f⁻¹ᵉ* ∘* g) : f ∘* h ~* g := (phomotopy_of_pinv_left_phomotopy p⁻¹*)⁻¹* /- pointed equivalences between particular pointed types -/ definition loopn_pequiv_loopn [constructor] (n : ℕ) (f : A ≃* B) : Ω[n] A ≃* Ω[n] B := pequiv.MK2 (apn n f) (apn n f⁻¹ᵉ*) abstract begin induction n with n IH, { apply pleft_inv}, { replace nat.succ n with n + 1, rewrite [+apn_succ], refine !ap1_compose⁻¹* ⬝* _, refine ap1_phomotopy IH ⬝* _, apply ap1_id} end end abstract begin induction n with n IH, { apply pright_inv}, { replace nat.succ n with n + 1, rewrite [+apn_succ], refine !ap1_compose⁻¹* ⬝* _, refine ap1_phomotopy IH ⬝* _, apply ap1_id} end end definition loop_pequiv_loop [constructor] (f : A ≃* B) : Ω A ≃* Ω B := loopn_pequiv_loopn 1 f definition to_pmap_loopn_pequiv_loopn [constructor] (n : ℕ) (f : A ≃* B) : loopn_pequiv_loopn n f ~* apn n f := !to_pmap_pequiv_MK2 definition to_pinv_loopn_pequiv_loopn [constructor] (n : ℕ) (f : A ≃* B) : (loopn_pequiv_loopn n f)⁻¹ᵉ* ~* apn n f⁻¹ᵉ* := !to_pinv_pequiv_MK2 definition loopn_pequiv_loopn_con (n : ℕ) (f : A ≃* B) (p q : Ω[n+1] A) : loopn_pequiv_loopn (n+1) f (p ⬝ q) = loopn_pequiv_loopn (n+1) f p ⬝ loopn_pequiv_loopn (n+1) f q := ap1_con (loopn_pequiv_loopn n f) p q definition loop_pequiv_loop_con {A B : Type*} (f : A ≃* B) (p q : Ω A) : loop_pequiv_loop f (p ⬝ q) = loop_pequiv_loop f p ⬝ loop_pequiv_loop f q := loopn_pequiv_loopn_con 0 f p q definition loopn_pequiv_loopn_rfl (n : ℕ) (A : Type*) : loopn_pequiv_loopn n (pequiv.refl A) = pequiv.refl (Ω[n] A) := begin apply pequiv_eq, apply eq_of_phomotopy, exact !to_pmap_loopn_pequiv_loopn ⬝* apn_pid n, end definition loop_pequiv_loop_rfl (A : Type*) : loop_pequiv_loop (pequiv.refl A) = pequiv.refl (Ω A) := loopn_pequiv_loopn_rfl 1 A definition pmap_functor [constructor] {A A' B B' : Type*} (f : A' →* A) (g : B →* B') : ppmap A B →* ppmap A' B' := pmap.mk (λh, g ∘* h ∘* f) abstract begin fapply pmap_eq, { esimp, intro a, exact respect_pt g}, { rewrite [▸*, ap_constant], apply idp_con} end end definition pequiv_pinverse (A : Type*) : Ω A ≃* Ω A := pequiv_of_pmap pinverse !is_equiv_eq_inverse definition pequiv_of_eq_pt [constructor] {A : Type} {a a' : A} (p : a = a') : pointed.MK A a ≃* pointed.MK A a' := pequiv_of_pmap (pmap_of_eq_pt p) !is_equiv_id /- -- TODO definition pmap_pequiv_pmap {A A' B B' : Type*} (f : A ≃* A') (g : B ≃* B') : ppmap A B ≃* ppmap A' B' := pequiv.MK (pmap_functor f⁻¹ᵉ* g) (pmap_functor f g⁻¹ᵉ*) abstract begin intro a, esimp, apply pmap_eq, { esimp, }, { } end end abstract begin end end -/ end pointed