/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn Theorems about the unit type -/ open equiv option eq pointed is_trunc namespace unit protected definition eta : Π(u : unit), ⋆ = u | eta ⋆ := idp definition unit_equiv_option_empty [constructor] : unit ≃ option empty := begin fapply equiv.MK, { intro u, exact none}, { intro e, exact star}, { intro e, cases e, reflexivity, contradiction}, { intro u, cases u, reflexivity}, end -- equivalences involving unit and other type constructors are in the file -- of the other constructor /- pointed and truncated unit -/ definition punit [constructor] : Set* := pSet.mk' unit notation `unit*` := punit end unit open unit is_trunc