/* Copyright (c) 2014-2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura */ #include "util/interrupt.h" #include "util/flet.h" #include "kernel/default_converter.h" #include "kernel/instantiate.h" #include "kernel/free_vars.h" #include "kernel/type_checker.h" #include "kernel/metavar.h" #include "kernel/error_msgs.h" namespace lean { static expr * g_dont_care = nullptr; default_converter::default_converter(environment const & env, bool memoize): m_env(env), m_memoize(memoize) { m_tc = nullptr; m_jst = nullptr; } constraint default_converter::mk_eq_cnstr(expr const & lhs, expr const & rhs, justification const & j) { return ::lean::mk_eq_cnstr(lhs, rhs, j); } optional default_converter::expand_macro(expr const & m) { lean_assert(is_macro(m)); return macro_def(m).expand(m, get_extension(*m_tc)); } /** \brief Apply normalizer extensions to \c e. */ optional> default_converter::norm_ext(expr const & e) { return m_env.norm_ext()(e, get_extension(*m_tc)); } optional default_converter::d_norm_ext(expr const & e, constraint_seq & cs) { if (auto r = norm_ext(e)) { cs += r->second; return some_expr(r->first); } else { return none_expr(); } } /** \brief Return true if \c e may be reduced later after metavariables are instantiated. */ bool default_converter::is_stuck(expr const & e) { return static_cast(m_env.norm_ext().is_stuck(e, get_extension(*m_tc))); } optional default_converter::is_stuck(expr const & e, type_checker & c) { if (is_meta(e)) { return some_expr(e); } else { return m_env.norm_ext().is_stuck(e, get_extension(c)); } } /** \brief Weak head normal form core procedure. It does not perform delta reduction nor normalization extensions. */ expr default_converter::whnf_core(expr const & e) { check_system("whnf"); // handle easy cases switch (e.kind()) { case expr_kind::Var: case expr_kind::Sort: case expr_kind::Meta: case expr_kind::Local: case expr_kind::Pi: case expr_kind::Constant: case expr_kind::Lambda: return e; case expr_kind::Macro: case expr_kind::App: break; } // check cache if (m_memoize) { auto it = m_whnf_core_cache.find(e); if (it != m_whnf_core_cache.end()) return it->second; } // do the actual work expr r; switch (e.kind()) { case expr_kind::Var: case expr_kind::Sort: case expr_kind::Meta: case expr_kind::Local: case expr_kind::Pi: case expr_kind::Constant: case expr_kind::Lambda: lean_unreachable(); // LCOV_EXCL_LINE case expr_kind::Macro: if (auto m = expand_macro(e)) r = whnf_core(*m); else r = e; break; case expr_kind::App: { buffer args; expr f0 = get_app_rev_args(e, args); expr f = whnf_core(f0); if (is_lambda(f)) { unsigned m = 1; unsigned num_args = args.size(); while (is_lambda(binding_body(f)) && m < num_args) { f = binding_body(f); m++; } lean_assert(m <= num_args); r = whnf_core(mk_rev_app(instantiate(binding_body(f), m, args.data() + (num_args - m)), num_args - m, args.data())); } else { r = f == f0 ? e : whnf_core(mk_rev_app(f, args.size(), args.data())); } break; }} if (m_memoize) m_whnf_core_cache.insert(mk_pair(e, r)); return r; } bool default_converter::is_opaque(declaration const &) const { return false; } /** \brief Expand \c e if it is non-opaque constant with weight >= w */ expr default_converter::unfold_name_core(expr e, unsigned w) { if (is_constant(e)) { if (auto d = m_env.find(const_name(e))) { if (d->is_definition() && !is_opaque(*d) && d->get_weight() >= w && length(const_levels(e)) == d->get_num_univ_params()) return unfold_name_core(instantiate_value_univ_params(*d, const_levels(e)), w); } } return e; } /** \brief Expand constants and application where the function is a constant. The unfolding is only performend if the constant corresponds to a non-opaque definition with weight >= w. */ expr default_converter::unfold_names(expr const & e, unsigned w) { if (is_app(e)) { expr f0 = get_app_fn(e); expr f = unfold_name_core(f0, w); if (is_eqp(f, f0)) { return e; } else { buffer args; get_app_rev_args(e, args); return mk_rev_app(f, args); } } else { return unfold_name_core(e, w); } } /** \brief Return some definition \c d iff \c e is a target for delta-reduction, and the given definition is the one to be expanded. */ optional default_converter::is_delta(expr const & e) const { expr const & f = get_app_fn(e); if (is_constant(f)) { if (auto d = m_env.find(const_name(f))) if (d->is_definition() && !is_opaque(*d)) return d; } return none_declaration(); } /** \brief Weak head normal form core procedure that perform delta reduction for non-opaque constants with weight greater than or equal to \c w. This method is based on whnf_core(expr const &) and \c unfold_names. \remark This method does not use normalization extensions attached in the environment. */ expr default_converter::whnf_core(expr e, unsigned w) { while (true) { expr new_e = unfold_names(whnf_core(e), w); if (is_eqp(e, new_e)) return e; e = new_e; } } /** \brief Put expression \c t in weak head normal form */ pair default_converter::whnf(expr const & e_prime) { // Do not cache easy cases switch (e_prime.kind()) { case expr_kind::Var: case expr_kind::Sort: case expr_kind::Meta: case expr_kind::Local: case expr_kind::Pi: return to_ecs(e_prime); case expr_kind::Lambda: case expr_kind::Macro: case expr_kind::App: case expr_kind::Constant: break; } expr e = e_prime; // check cache if (m_memoize) { auto it = m_whnf_cache.find(e); if (it != m_whnf_cache.end()) return it->second; } expr t = e; constraint_seq cs; while (true) { expr t1 = whnf_core(t, 0); if (auto new_t = d_norm_ext(t1, cs)) { t = *new_t; } else { auto r = mk_pair(t1, cs); if (m_memoize) m_whnf_cache.insert(mk_pair(e, r)); return r; } } } expr default_converter::whnf(expr const & e_prime, constraint_seq & cs) { auto r = whnf(e_prime); cs += r.second; return r.first; } /** \brief Given lambda/Pi expressions \c t and \c s, return true iff \c t is def eq to \c s. t and s are definitionally equal iff domain(t) is definitionally equal to domain(s) and body(t) is definitionally equal to body(s) */ bool default_converter::is_def_eq_binding(expr t, expr s, constraint_seq & cs) { lean_assert(t.kind() == s.kind()); lean_assert(is_binding(t)); expr_kind k = t.kind(); buffer subst; do { optional var_s_type; if (binding_domain(t) != binding_domain(s)) { var_s_type = instantiate_rev(binding_domain(s), subst.size(), subst.data()); expr var_t_type = instantiate_rev(binding_domain(t), subst.size(), subst.data()); if (!is_def_eq(var_t_type, *var_s_type, cs)) return false; } if (!closed(binding_body(t)) || !closed(binding_body(s))) { // local is used inside t or s if (!var_s_type) var_s_type = instantiate_rev(binding_domain(s), subst.size(), subst.data()); subst.push_back(mk_local(mk_fresh_name(*m_tc), binding_name(s), *var_s_type, binding_info(s))); } else { subst.push_back(*g_dont_care); // don't care } t = binding_body(t); s = binding_body(s); } while (t.kind() == k && s.kind() == k); return is_def_eq(instantiate_rev(t, subst.size(), subst.data()), instantiate_rev(s, subst.size(), subst.data()), cs); } bool default_converter::is_def_eq(level const & l1, level const & l2, constraint_seq & cs) { if (is_equivalent(l1, l2)) { return true; } else if (has_meta(l1) || has_meta(l2)) { cs += constraint_seq(mk_level_eq_cnstr(l1, l2, m_jst->get())); return true; } else { return false; } } bool default_converter::is_def_eq(levels const & ls1, levels const & ls2, constraint_seq & cs) { if (is_nil(ls1) && is_nil(ls2)) { return true; } else if (!is_nil(ls1) && !is_nil(ls2)) { return is_def_eq(head(ls1), head(ls2), cs) && is_def_eq(tail(ls1), tail(ls2), cs); } else { return false; } } /** \brief This is an auxiliary method for is_def_eq. It handles the "easy cases". */ lbool default_converter::quick_is_def_eq(expr const & t, expr const & s, constraint_seq & cs, bool use_hash) { if (m_eqv_manager.is_equiv(t, s, use_hash)) return l_true; if (is_meta(t) || is_meta(s)) { // if t or s is a metavariable (or the application of a metavariable), then add constraint cs += constraint_seq(mk_eq_cnstr(t, s, m_jst->get())); return l_true; } if (t.kind() == s.kind()) { switch (t.kind()) { case expr_kind::Lambda: case expr_kind::Pi: return to_lbool(is_def_eq_binding(t, s, cs)); case expr_kind::Sort: return to_lbool(is_def_eq(sort_level(t), sort_level(s), cs)); case expr_kind::Meta: lean_unreachable(); // LCOV_EXCL_LINE case expr_kind::Var: case expr_kind::Local: case expr_kind::App: case expr_kind::Constant: case expr_kind::Macro: // We do not handle these cases in this method. break; } } return l_undef; // This is not an "easy case" } /** \brief Return true if arguments of \c t are definitionally equal to arguments of \c s. This method is used to implement an optimization in the method \c is_def_eq. */ bool default_converter::is_def_eq_args(expr t, expr s, constraint_seq & cs) { while (is_app(t) && is_app(s)) { if (!is_def_eq(app_arg(t), app_arg(s), cs)) return false; t = app_fn(t); s = app_fn(s); } return !is_app(t) && !is_app(s); } /** \brief Return true iff t is a constant named f_name or an application of the form (f_name a_1 ... a_k) */ bool default_converter::is_app_of(expr t, name const & f_name) { t = get_app_fn(t); return is_constant(t) && const_name(t) == f_name; } /** \brief Try to solve (fun (x : A), B) =?= s by trying eta-expansion on s */ bool default_converter::try_eta_expansion_core(expr const & t, expr const & s, constraint_seq & cs) { if (is_lambda(t) && !is_lambda(s)) { auto tcs = infer_type(s); auto wcs = whnf(tcs.first); expr s_type = wcs.first; constraint_seq aux_cs; if (is_pi(s_type)) { // do nothing ... s_type is already a Pi } else if (auto m = m_tc->is_stuck(s_type)) { name_generator ngen = m_tc->mk_ngen(); expr r = mk_pi_for(ngen, *m); justification j = mk_justification(s, [=](formatter const & fmt, substitution const & subst, bool) { return pp_function_expected(fmt, substitution(subst).instantiate(s)); }); aux_cs += mk_eq_cnstr(s_type, r, j); s_type = r; } else { return false; } expr new_s = mk_lambda(binding_name(s_type), binding_domain(s_type), mk_app(s, Var(0)), binding_info(s_type)); auto dcs = is_def_eq(t, new_s); if (!dcs.first) { return false; } cs += dcs.second + wcs.second + tcs.second + aux_cs; return true; } else { return false; } } /** \brief Return true iff \c t and \c s are definitionally equal. \remark Store in \c cs any generated constraints. */ bool default_converter::is_def_eq(expr const & t, expr const & s, constraint_seq & cs) { auto bcs = is_def_eq(t, s); if (bcs.first) { cs += bcs.second; return true; } else { return false; } } /** \brief Return true if \c t and \c s are definitionally equal because they are applications of the form (f a_1 ... a_n) (g b_1 ... b_n), and \c f and \c g are definitionally equal, and \c a_i and \c b_i are also definitionally equal for every 1 <= i <= n. Return false otherwise. \remark Store in \c cs any generated constraints */ bool default_converter::is_def_eq_app(expr const & t, expr const & s, constraint_seq & cs) { if (is_app(t) && is_app(s)) { buffer t_args; buffer s_args; expr t_fn = get_app_args(t, t_args); expr s_fn = get_app_args(s, s_args); constraint_seq cs_prime = cs; if (is_def_eq(t_fn, s_fn, cs_prime) && t_args.size() == s_args.size()) { unsigned i = 0; for (; i < t_args.size(); i++) { if (!is_def_eq(t_args[i], s_args[i], cs_prime)) break; } if (i == t_args.size()) { cs = cs_prime; return true; } } } return false; } /** \brief remark: is_prop returns true only if \c e is reducible to Prop. If \c e contains metavariables, then reduction can get stuck, and is_prop will return false. */ pair default_converter::is_prop(expr const & e) { auto tcs = infer_type(e); auto wcs = whnf(tcs.first); if (wcs.first == mk_Prop()) return to_bcs(true, wcs.second + tcs.second); else return to_bcs(false); } /** \brief Return true if \c t and \c s are definitionally equal due to proof irrelevant. Return false otherwise. \remark Store in \c cs any generated constraints. */ bool default_converter::is_def_eq_proof_irrel(expr const & t, expr const & s, constraint_seq & cs) { if (!m_env.prop_proof_irrel()) return false; // Proof irrelevance support for Prop (aka Type.{0}) auto tcs = infer_type(t); auto scs = infer_type(s); expr t_type = tcs.first; expr s_type = scs.first; auto pcs = is_prop(t_type); if (pcs.first) { auto dcs = is_def_eq(t_type, s_type); if (dcs.first) { cs += dcs.second + scs.second + pcs.second + tcs.second; return true; } } else { // If we can't stablish whether t_type is Prop, we try s_type. pcs = is_prop(s_type); if (pcs.first) { auto dcs = is_def_eq(t_type, s_type); if (dcs.first) { cs += dcs.second + scs.second + pcs.second + tcs.second; return true; } } // This procedure will miss the case where s_type and t_type cannot be reduced to Prop // because they contain metavariables. } return false; } bool default_converter::failed_before(expr const & t, expr const & s) const { if (t.hash() < s.hash()) { return m_failure_cache.find(mk_pair(t, s)) != m_failure_cache.end(); } else if (t.hash() > s.hash()) { return m_failure_cache.find(mk_pair(s, t)) != m_failure_cache.end(); } else { return m_failure_cache.find(mk_pair(t, s)) != m_failure_cache.end() || m_failure_cache.find(mk_pair(s, t)) != m_failure_cache.end(); } } void default_converter::cache_failure(expr const & t, expr const & s) { if (t.hash() <= s.hash()) m_failure_cache.insert(mk_pair(t, s)); else m_failure_cache.insert(mk_pair(s, t)); } /** \brief Perform one lazy delta-reduction step. Return - l_true if t_n and s_n are definitionally equal. - l_false if they are not definitionally equal. - l_undef it the step did not manage to establish whether they are definitionally equal or not. \remark t_n, s_n and cs are updated. */ auto default_converter::lazy_delta_reduction_step(expr & t_n, expr & s_n, constraint_seq & cs) -> reduction_status { auto d_t = is_delta(t_n); auto d_s = is_delta(s_n); if (!d_t && !d_s) { return reduction_status::DefUnknown; } else if (d_t && !d_s) { t_n = whnf_core(unfold_names(t_n, 0)); } else if (!d_t && d_s) { s_n = whnf_core(unfold_names(s_n, 0)); } else if (d_t->get_weight() > d_s->get_weight()) { t_n = whnf_core(unfold_names(t_n, d_s->get_weight() + 1)); } else if (d_t->get_weight() < d_s->get_weight()) { s_n = whnf_core(unfold_names(s_n, d_t->get_weight() + 1)); } else { lean_assert(d_t && d_s && d_t->get_weight() == d_s->get_weight()); if (is_app(t_n) && is_app(s_n) && is_eqp(*d_t, *d_s)) { // If t_n and s_n are both applications of the same (non-opaque) definition, if (has_expr_metavar(t_n) || has_expr_metavar(s_n)) { // We let the unifier deal with cases such as // (f ...) =?= (f ...) // when t_n or s_n contains metavariables return reduction_status::DefUnknown; } else { // Optimization: // We try to check if their arguments are definitionally equal. // If they are, then t_n and s_n must be definitionally equal, and we can // skip the delta-reduction step. // If the flag use_conv_opt() is not true, then we skip this optimization constraint_seq tmp_cs; if (!is_opaque(*d_t) && d_t->use_conv_opt() && !failed_before(t_n, s_n)) { if (is_def_eq(const_levels(get_app_fn(t_n)), const_levels(get_app_fn(s_n)), tmp_cs) && is_def_eq_args(t_n, s_n, tmp_cs)) { cs += tmp_cs; return reduction_status::DefEqual; } else { cache_failure(t_n, s_n); } } } } t_n = whnf_core(unfold_names(t_n, d_t->get_weight() - 1)); s_n = whnf_core(unfold_names(s_n, d_s->get_weight() - 1)); } switch (quick_is_def_eq(t_n, s_n, cs)) { case l_true: return reduction_status::DefEqual; case l_false: return reduction_status::DefDiff; case l_undef: return reduction_status::Continue; } lean_unreachable(); } lbool default_converter::lazy_delta_reduction(expr & t_n, expr & s_n, constraint_seq & cs) { while (true) { switch (lazy_delta_reduction_step(t_n, s_n, cs)) { case reduction_status::Continue: break; case reduction_status::DefUnknown: return l_undef; case reduction_status::DefEqual: return l_true; case reduction_status::DefDiff: return l_false; } } } auto default_converter::ext_reduction_step(expr & t_n, expr & s_n, constraint_seq & cs) -> reduction_status { auto new_t_n = d_norm_ext(t_n, cs); auto new_s_n = d_norm_ext(s_n, cs); if (!new_t_n && !new_s_n) return reduction_status::DefUnknown; if (new_t_n) t_n = whnf_core(*new_t_n); if (new_s_n) s_n = whnf_core(*new_s_n); switch (quick_is_def_eq(t_n, s_n, cs)) { case l_true: return reduction_status::DefEqual; case l_false: return reduction_status::DefDiff; case l_undef: return reduction_status::Continue; } lean_unreachable(); } // Apply lazy delta-reduction and then normalizer extensions lbool default_converter::reduce_def_eq(expr & t_n, expr & s_n, constraint_seq & cs) { while (true) { // first, keep applying lazy delta-reduction while applicable lbool r = lazy_delta_reduction(t_n, s_n, cs); if (r != l_undef) return r; // try normalizer extensions switch (ext_reduction_step(t_n, s_n, cs)) { case reduction_status::Continue: break; case reduction_status::DefUnknown: return l_undef; case reduction_status::DefEqual: return l_true; case reduction_status::DefDiff: return l_false; } } } bool default_converter::postpone_is_def_eq(expr const & t, expr const & s) { if (has_expr_metavar(t) || has_expr_metavar(s)) { optional d_t = is_delta(t); optional d_s = is_delta(s); if (d_t && d_s && is_eqp(*d_t, *d_s)) return true; else if (is_stuck(t) && is_stuck(s)) return true; } return false; } /** \brief Return true if we should try proof irrelevance eagerly. \remark: We do it whenever t and s do not contain metavariables and one of them is a theorem application. */ static bool try_eager_proof_irrel(environment const & env, expr const & t, expr const & s) { if (!env.prop_proof_irrel()) return false; if (has_expr_metavar(t) || has_expr_metavar(s)) return false; expr const & f_t = get_app_fn(t); if (is_constant(f_t) && env.get(const_name(f_t)).is_theorem()) return true; expr const & f_s = get_app_fn(s); return is_constant(f_s) && env.get(const_name(f_s)).is_theorem(); } pair default_converter::is_def_eq_core(expr const & t, expr const & s) { check_system("is_definitionally_equal"); constraint_seq cs; bool use_hash = true; lbool r = quick_is_def_eq(t, s, cs, use_hash); if (r != l_undef) return to_bcs(r == l_true, cs); // apply whnf (without using delta-reduction or normalizer extensions) expr t_n = whnf_core(t); expr s_n = whnf_core(s); constraint_seq pi_cs_1; bool eager_proof_irrel = try_eager_proof_irrel(m_env, t, s); if (eager_proof_irrel && is_def_eq_proof_irrel(t, s, pi_cs_1)) return to_bcs(true, pi_cs_1); if (!is_eqp(t_n, t) || !is_eqp(s_n, s)) { r = quick_is_def_eq(t_n, s_n, cs); if (r != l_undef) return to_bcs(r == l_true, cs); } r = reduce_def_eq(t_n, s_n, cs); if (r != l_undef) return to_bcs(r == l_true, cs); if (is_constant(t_n) && is_constant(s_n) && const_name(t_n) == const_name(s_n) && is_def_eq(const_levels(t_n), const_levels(s_n), cs)) return to_bcs(true, cs); if (is_local(t_n) && is_local(s_n) && mlocal_name(t_n) == mlocal_name(s_n)) return to_bcs(true, cs); bool postpone = postpone_is_def_eq(t_n, s_n); // At this point, t_n and s_n are in weak head normal form (modulo meta-variables and proof irrelevance) if (!postpone && is_def_eq_app(t_n, s_n, cs)) return to_bcs(true, cs); if (try_eta_expansion(t_n, s_n, cs)) return to_bcs(true, cs); constraint_seq pi_cs_2; if (!eager_proof_irrel && is_def_eq_proof_irrel(t, s, pi_cs_2)) return to_bcs(true, pi_cs_2); if (is_stuck(t_n) || is_stuck(s_n) || postpone) { cs += constraint_seq(mk_eq_cnstr(t_n, s_n, m_jst->get())); return to_bcs(true, cs); } return to_bcs(false); } pair default_converter::is_def_eq(expr const & t, expr const & s) { auto r = is_def_eq_core(t, s); if (r.first && !r.second) m_eqv_manager.add_equiv(t, s); return r; } /** Return true iff t is definitionally equal to s. */ pair default_converter::is_def_eq(expr const & t, expr const & s, type_checker & c, delayed_justification & jst) { flet set_tc(m_tc, &c); flet set_js(m_jst, &jst); return is_def_eq(t, s); } pair default_converter::whnf(expr const & e, type_checker & c) { flet set_tc(m_tc, &c); return whnf(e); } void initialize_default_converter() { g_dont_care = new expr(Const("dontcare")); } void finalize_default_converter() { delete g_dont_care; } }