-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Leonardo de Moura -- logic.axioms.classical -- ====================== import logic.core.quantifiers logic.core.cast struc.relation using eq_ops axiom prop_complete (a : Prop) : a = true ∨ a = false theorem cases (P : Prop → Prop) (H1 : P true) (H2 : P false) (a : Prop) : P a := or_elim (prop_complete a) (assume Ht : a = true, Ht⁻¹ ▸ H1) (assume Hf : a = false, Hf⁻¹ ▸ H2) theorem cases_on (a : Prop) {P : Prop → Prop} (H1 : P true) (H2 : P false) : P a := cases P H1 H2 a -- this supercedes the em in decidable theorem em (a : Prop) : a ∨ ¬a := or_elim (prop_complete a) (assume Ht : a = true, or_inl (eq_true_elim Ht)) (assume Hf : a = false, or_inr (eq_false_elim Hf)) theorem prop_complete_swapped (a : Prop) : a = false ∨ a = true := cases (λ x, x = false ∨ x = true) (or_inr (refl true)) (or_inl (refl false)) a theorem propext {a b : Prop} (Hab : a → b) (Hba : b → a) : a = b := or_elim (prop_complete a) (assume Hat, or_elim (prop_complete b) (assume Hbt, Hat ⬝ Hbt⁻¹) (assume Hbf, false_elim (a = b) (Hbf ▸ (Hab (eq_true_elim Hat))))) (assume Haf, or_elim (prop_complete b) (assume Hbt, false_elim (a = b) (Haf ▸ (Hba (eq_true_elim Hbt)))) (assume Hbf, Haf ⬝ Hbf⁻¹)) theorem iff_to_eq {a b : Prop} (H : a ↔ b) : a = b := iff_elim (assume H1 H2, propext H1 H2) H theorem iff_eq_eq {a b : Prop} : (a ↔ b) = (a = b) := propext (assume H, iff_to_eq H) (assume H, eq_to_iff H) using relation theorem iff_congruence [instance] (P : Prop → Prop) : congruence iff iff P := congruence_mk (take (a b : Prop), assume H : a ↔ b, show P a ↔ P b, from eq_to_iff (subst (iff_to_eq H) (refl (P a))))