-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Leonardo de Moura, Jeremy Avigad import logic.classes.inhabited logic.connectives.eq inductive sigma {A : Type} (B : A → Type) : Type := | dpair : Πx : A, B x → sigma B notation `Σ` binders `,` r:(scoped P, sigma P) := r namespace sigma section parameters {A : Type} {B : A → Type} abbreviation dpr1 (p : Σ x, B x) : A := sigma_rec (λ a b, a) p abbreviation dpr2 {A : Type} {B : A → Type} (p : Σ x, B x) : B (dpr1 p) := sigma_rec (λ a b, b) p theorem dpr1_dpair (a : A) (b : B a) : dpr1 (dpair a b) = a := refl a theorem dpr2_dpair (a : A) (b : B a) : dpr2 (dpair a b) = b := refl b -- TODO: remove prefix when we can protect it theorem sigma_destruct {P : sigma B → Prop} (p : sigma B) (H : ∀a b, P (dpair a b)) : P p := sigma_rec H p theorem dpair_ext (p : sigma B) : dpair (dpr1 p) (dpr2 p) = p := sigma_destruct p (take a b, refl _) -- Note that we give the general statment explicitly, to help the unifier theorem dpair_eq {a1 a2 : A} {b1 : B a1} {b2 : B a2} (H1 : a1 = a2) (H2 : eq_rec_on H1 b1 = b2) : dpair a1 b1 = dpair a2 b2 := (show ∀(b2 : B a2) (H1 : a1 = a2) (H2 : eq_rec_on H1 b1 = b2), dpair a1 b1 = dpair a2 b2, from eq_rec (take (b2' : B a1), assume (H1' : a1 = a1), assume (H2' : eq_rec_on H1' b1 = b2'), show dpair a1 b1 = dpair a1 b2', from calc dpair a1 b1 = dpair a1 (eq_rec_on H1' b1) : {symm (eq_rec_on_id H1' b1)} ... = dpair a1 b2' : {H2'}) H1) b2 H1 H2 theorem sigma_eq {p1 p2 : Σx : A, B x} : ∀(H1 : dpr1 p1 = dpr1 p2) (H2 : eq_rec_on H1 (dpr2 p1) = (dpr2 p2)), p1 = p2 := sigma_destruct p1 (take a1 b1, sigma_destruct p2 (take a2 b2 H1 H2, dpair_eq H1 H2)) theorem sigma_inhabited (H1 : inhabited A) (H2 : inhabited (B (default A))) : inhabited (sigma B) := inhabited_elim H1 (λa, inhabited_elim H2 (λb, inhabited_intro (dpair (default A) b))) end instance sigma_inhabited end sigma