/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: logic.instances Author: Jeremy Avigad Class instances for iff and eq. -/ import logic.connectives algebra.relation namespace relation /- logical equivalence relations -/ theorem is_equivalence_eq [instance] (T : Type) : relation.is_equivalence (@eq T) := relation.is_equivalence.mk (@eq.refl T) (@eq.symm T) (@eq.trans T) theorem is_equivalence_iff [instance] : relation.is_equivalence iff := relation.is_equivalence.mk @iff.refl @iff.symm @iff.trans /- congruences for logic operations -/ theorem is_congruence_not : is_congruence iff iff not := is_congruence.mk (take a b, assume H : a ↔ b, iff.intro (assume H1 : ¬a, assume H2 : b, H1 (iff.elim_right H H2)) (assume H1 : ¬b, assume H2 : a, H1 (iff.elim_left H H2))) theorem is_congruence_and : is_congruence2 iff iff iff and := is_congruence2.mk (take a1 b1 a2 b2, assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2, iff.intro (assume H3 : a1 ∧ a2, and.imp_and H3 (iff.elim_left H1) (iff.elim_left H2)) (assume H3 : b1 ∧ b2, and.imp_and H3 (iff.elim_right H1) (iff.elim_right H2))) theorem is_congruence_or : is_congruence2 iff iff iff or := is_congruence2.mk (take a1 b1 a2 b2, assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2, iff.intro (assume H3 : a1 ∨ a2, or.imp_or H3 (iff.elim_left H1) (iff.elim_left H2)) (assume H3 : b1 ∨ b2, or.imp_or H3 (iff.elim_right H1) (iff.elim_right H2))) theorem is_congruence_imp : is_congruence2 iff iff iff imp := is_congruence2.mk (take a1 b1 a2 b2, assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2, iff.intro (assume H3 : a1 → a2, assume Hb1 : b1, iff.elim_left H2 (H3 ((iff.elim_right H1) Hb1))) (assume H3 : b1 → b2, assume Ha1 : a1, iff.elim_right H2 (H3 ((iff.elim_left H1) Ha1)))) theorem is_congruence_iff : is_congruence2 iff iff iff iff := is_congruence2.mk (take a1 b1 a2 b2, assume H1 : a1 ↔ b1, assume H2 : a2 ↔ b2, iff.intro (assume H3 : a1 ↔ a2, iff.trans (iff.symm H1) (iff.trans H3 H2)) (assume H3 : b1 ↔ b2, iff.trans H1 (iff.trans H3 (iff.symm H2)))) -- theorem is_congruence_const_iff [instance] := is_congruence.const iff iff.refl definition is_congruence_not_compose [instance] := is_congruence.compose is_congruence_not definition is_congruence_and_compose [instance] := is_congruence.compose21 is_congruence_and definition is_congruence_or_compose [instance] := is_congruence.compose21 is_congruence_or definition is_congruence_implies_compose [instance] := is_congruence.compose21 is_congruence_imp definition is_congruence_iff_compose [instance] := is_congruence.compose21 is_congruence_iff /- a general substitution operation with respect to an arbitrary congruence -/ namespace general_subst theorem subst {T : Type} (R : T → T → Prop) ⦃P : T → Prop⦄ [C : is_congruence R iff P] {a b : T} (H : R a b) (H1 : P a) : P b := iff.elim_left (is_congruence.app C H) H1 end general_subst /- iff can be coerced to implication -/ definition mp_like_iff [instance] : relation.mp_like iff := relation.mp_like.mk (λa b (H : a ↔ b), iff.elim_left H) /- support for calculations with iff -/ namespace iff theorem subst {P : Prop → Prop} [C : is_congruence iff iff P] {a b : Prop} (H : a ↔ b) (H1 : P a) : P b := @general_subst.subst Prop iff P C a b H H1 end iff calc_subst iff.subst namespace iff_ops notation H ⁻¹ := iff.symm H notation H1 ⬝ H2 := iff.trans H1 H2 notation H1 ▸ H2 := iff.subst H1 H2 definition refl := iff.refl definition symm := @iff.symm definition trans := @iff.trans definition subst := @iff.subst definition mp := @iff.mp end iff_ops end relation